Suppr超能文献

在提供对“所有人”研究计划访问权限的同时,管理重新识别风险。

Managing re-identification risks while providing access to the All of Us research program.

机构信息

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

J Am Med Inform Assoc. 2023 Apr 19;30(5):907-914. doi: 10.1093/jamia/ocad021.

Abstract

OBJECTIVE

The All of Us Research Program makes individual-level data available to researchers while protecting the participants' privacy. This article describes the protections embedded in the multistep access process, with a particular focus on how the data was transformed to meet generally accepted re-identification risk levels.

METHODS

At the time of the study, the resource consisted of 329 084 participants. Systematic amendments were applied to the data to mitigate re-identification risk (eg, generalization of geographic regions, suppression of public events, and randomization of dates). We computed the re-identification risk for each participant using a state-of-the-art adversarial model specifically assuming that it is known that someone is a participant in the program. We confirmed the expected risk is no greater than 0.09, a threshold that is consistent with guidelines from various US state and federal agencies. We further investigated how risk varied as a function of participant demographics.

RESULTS

The results indicated that 95th percentile of the re-identification risk of all the participants is below current thresholds. At the same time, we observed that risk levels were higher for certain race, ethnic, and genders.

CONCLUSIONS

While the re-identification risk was sufficiently low, this does not imply that the system is devoid of risk. Rather, All of Us uses a multipronged data protection strategy that includes strong authentication practices, active monitoring of data misuse, and penalization mechanisms for users who violate terms of service.

摘要

目的

All of Us 研究计划使研究人员能够获得个体层面的数据,同时保护参与者的隐私。本文描述了嵌入在多步骤访问过程中的保护措施,特别关注如何转换数据以达到公认的重新识别风险水平。

方法

在研究时,该资源包含 329084 名参与者。对数据进行了系统的修正,以降低重新识别风险(例如,地理区域的泛化、公共事件的抑制和日期的随机化)。我们使用一种专门假设已知某人是该计划参与者的最先进对抗模型,为每个参与者计算重新识别风险。我们确认预期风险不超过 0.09,这一阈值与来自美国各个州和联邦机构的指南一致。我们进一步研究了风险如何随参与者人口统计学特征的变化而变化。

结果

结果表明,所有参与者重新识别风险的第 95 百分位数均低于当前阈值。同时,我们观察到某些种族、民族和性别群体的风险水平较高。

结论

虽然重新识别风险足够低,但这并不意味着该系统没有风险。相反,All of Us 使用了一种多管齐下的数据保护策略,包括强大的身份验证实践、对数据滥用的主动监控以及对违反服务条款的用户的惩罚机制。

相似文献

引用本文的文献

本文引用的文献

6
The "All of Us" Research Program.“All of Us”研究计划。
N Engl J Med. 2019 Aug 15;381(7):668-676. doi: 10.1056/NEJMsr1809937.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验