Suppr超能文献

作为一种无损的一次性算法,DLMM 适用于协作式多站点分布式线性混合模型。

DLMM as a lossless one-shot algorithm for collaborative multi-site distributed linear mixed models.

机构信息

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA.

Division of Public Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.

出版信息

Nat Commun. 2022 Mar 30;13(1):1678. doi: 10.1038/s41467-022-29160-4.

Abstract

Linear mixed models are commonly used in healthcare-based association analyses for analyzing multi-site data with heterogeneous site-specific random effects. Due to regulations for protecting patients' privacy, sensitive individual patient data (IPD) typically cannot be shared across sites. We propose an algorithm for fitting distributed linear mixed models (DLMMs) without sharing IPD across sites. This algorithm achieves results identical to those achieved using pooled IPD from multiple sites (i.e., the same effect size and standard error estimates), hence demonstrating the lossless property. The algorithm requires each site to contribute minimal aggregated data in only one round of communication. We demonstrate the lossless property of the proposed DLMM algorithm by investigating the associations between demographic and clinical characteristics and length of hospital stay in COVID-19 patients using administrative claims from the UnitedHealth Group Clinical Discovery Database. We extend this association study by incorporating 120,609 COVID-19 patients from 11 collaborative data sources worldwide.

摘要

线性混合模型常用于医疗保健相关的关联分析,以分析具有异质站点特定随机效应的多站点数据。由于保护患者隐私的规定,敏感的个体患者数据(IPD)通常不能在站点之间共享。我们提出了一种在不跨站点共享 IPD 的情况下拟合分布式线性混合模型(DLMM)的算法。该算法实现的结果与使用多个站点的汇总 IPD 实现的结果相同(即,相同的效应大小和标准误差估计),因此证明了无损特性。该算法要求每个站点仅在一轮通信中贡献最小聚合数据。我们通过使用联合健康集团临床发现数据库中的行政索赔来调查 COVID-19 患者的人口统计学和临床特征与住院时间之间的关联,证明了所提出的 DLMM 算法的无损特性。我们通过纳入来自全球 11 个合作数据源的 120609 名 COVID-19 患者来扩展该关联研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a55/8967932/5b173ca4b2e1/41467_2022_29160_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验