Suppr超能文献

从内镜特征预测幽门螺杆菌感染。

Predicting Helicobacter pylori infection from endoscopic features.

机构信息

Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Department of Gastroenterology, Bundang Jesaeng General Hospital, Seongnam, Korea.

出版信息

Korean J Intern Med. 2024 May;39(3):439-447. doi: 10.3904/kjim.2023.300. Epub 2024 Apr 30.

Abstract

BACKGROUND

Helicobacter pylori infection, prevalent in more than half of the global population, is associated with various gastrointestinal diseases, including peptic ulcers and gastric cancer. The effectiveness of early diagnosis and treatment in preventing gastric cancer highlights the need for improved diagnostic methods. This study aimed to develop a simple scoring system based on endoscopic findings to predict H. pylori infection.

METHODS

A retrospective analysis was conducted on 1,007 patients who underwent upper gastrointestinal endoscopy at Asan Medical Center from January 2019 to December 2021. Exclusion criteria included prior H. pylori treatment, gastric surgery, or gastric malignancies. Diagnostic techniques included rapid urease and 13C-urea breath tests, H. pylori culture, and assessment of endoscopic features following the Kyoto gastritis classification. A new scoring system based on endoscopic findings including regular arrangement of collecting venules (RAC), nodularity, and diffuse or spotty redness was developed for predicting H. pylori infection, utilizing logistic regression analysis in the development set.

RESULTS

The scoring system demonstrated high predictive accuracy for H. pylori infection in the validation set. Scores of 2 and 3 were associated with 96% and 99% infection risk, respectively. Additionally, there was a higher prevalence of diffuse redness and sticky mucus in cases where the initial H. pylori eradication treatment failed.

CONCLUSION

Our scoring system showed potential for improving diagnostic accuracy in H. pylori infection. H. pylori testing should be considered upon spotty redness, diffuse redness, nodularity, and RAC absence on endoscopic findings as determined by the predictive scoring system.

摘要

背景

幽门螺杆菌(H. pylori)感染在全球超过一半的人口中普遍存在,与多种胃肠道疾病相关,包括消化性溃疡和胃癌。早期诊断和治疗在预防胃癌方面的有效性突显了改进诊断方法的必要性。本研究旨在开发一种基于内镜发现的简单评分系统,以预测 H. pylori 感染。

方法

对 2019 年 1 月至 2021 年 12 月期间在 Asan 医疗中心接受上消化道内镜检查的 1007 例患者进行回顾性分析。排除标准包括既往 H. pylori 治疗、胃部手术或胃部恶性肿瘤。诊断技术包括快速尿素酶和 13C-尿素呼气试验、H. pylori 培养以及根据京都胃炎分类评估内镜特征。利用开发集中的逻辑回归分析,为预测 H. pylori 感染,开发了一种基于内镜发现(包括规则排列的收集静脉(RAC)、结节和弥漫性或点状红斑)的新评分系统。

结果

评分系统在验证集中对 H. pylori 感染具有较高的预测准确性。得分 2 和 3 分别与 96%和 99%的感染风险相关。此外,在初始 H. pylori 根除治疗失败的情况下,弥漫性红斑和粘性黏液的发生率更高。

结论

我们的评分系统显示出提高 H. pylori 感染诊断准确性的潜力。根据预测评分系统,在内镜检查发现点状红斑、弥漫性红斑、结节和 RAC 缺失时,应考虑进行 H. pylori 检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9321/11076888/aade812b2692/kjim-2023-300f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验