Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB, Brazil.
Departamento de Física, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil.
Chaos. 2024 May 1;34(5). doi: 10.1063/5.0202561.
Quantification of chaos is a challenging issue in complex dynamical systems. In this paper, we discuss the chaotic properties of generalized Lotka-Volterra and May-Leonard models of biodiversity, via the Hamming distance density. We identified chaotic behavior for different scenarios via the specific features of the Hamming distance and the method of q-exponential fitting. We also investigated the spatial autocorrelation length to find the corresponding characteristic length in terms of the number of species in each system. In particular, the results concerning the characteristic length are in good accordance with the study of the chaotic behavior implemented in this work.
混沌的量化是复杂动力系统中的一个具有挑战性的问题。在本文中,我们通过汉明距离密度来讨论广义Lotka-Volterra 和 May-Leonard 生物多样性模型的混沌特性。我们通过汉明距离的具体特征和 q-指数拟合方法来识别不同场景中的混沌行为。我们还研究了空间自相关长度,以找到每个系统中物种数量的相应特征长度。特别是,关于特征长度的结果与本文中实施的混沌行为研究非常吻合。