Suppr超能文献

一种分层递归特征消除算法,用于开发用于统计推理和决策的用户行为脑机接口应用。

A hierarchical recursive feature elimination algorithm to develop brain computer interface application of user behavior for statistical reasoning and decision making.

机构信息

Department of Electrical and Computer Engineering, University of California, San Diego, Alliant International univercity, San Diego, CA, USA; CSML, Alliant International University, San Diego, San Diego, CA, USA; Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA, USA.

Department of Electrical and Computer Engineering, University of California, San Diego, Alliant International univercity, San Diego, CA, USA.

出版信息

J Neurosci Methods. 2024 Aug;408:110161. doi: 10.1016/j.jneumeth.2024.110161. Epub 2024 May 7.

Abstract

BACKGROUND

With the aid of a brain computer interface (BCI), users can communicate and receive signals wirelessly or over wired connections to operate smart devices. A BCI classifier's architecture is quite difficult since numerous elements should be combined. These elements are made up of brain signals, which also include high levels of weak sounds that could provide reliable participant recordings of daily activities. We must use computer vision techniques to create a model in order to control those information. The high dimension and volume of signals present the classification classifier with its primary obstacles.

NEW METHOD

Due to this, we extracted and classified the brain activity in this study, and we also presented a novel hierarchical recursive feature elimination method that we refer to as HRFE embracing noisy additions. HRFE makes a variety of categorization suggestions to eliminate bias in classifying BCI systems of different types. We put the HRFE to the test on two BCI signal data sets-specifically, dataset I and BCI contests III-using shallow and deep convolution network classification techniques. Just a grid of assets is used to create electrocorticography (ECoG) signals on the contralateral (right) motor cortex, and these signals are recorded in the BCI contests III database.

RESULTS

Using ECoG signals, we choose the top 20 features that have the biggest effects on distortion and classification selection.

COMPARISON WITH EXISTING METHODS

The simulation findings show that HRFE has a significant computer vision enhancement when compared to comparable feature selection methods in the literature, particularly for ECoG signal, which achieves about 93% reliability.

摘要

背景

借助脑机接口 (BCI),用户可以通过无线或有线连接进行通信并接收信号,从而操作智能设备。BCI 分类器的架构非常复杂,因为需要组合许多元素。这些元素由脑信号组成,其中还包括可以为日常活动提供可靠参与者记录的高水平微弱声音。为了控制这些信息,我们必须使用计算机视觉技术来创建模型。信号的高维度和大容量给分类器带来了主要障碍。

新方法

有鉴于此,我们在这项研究中提取和分类了脑活动,并提出了一种新颖的分层递归特征消除方法,我们称之为 HRFE,它包含噪声添加。HRFE 提出了各种分类建议,以消除不同类型 BCI 系统分类中的偏差。我们使用浅层和深层卷积网络分类技术,在两个 BCI 信号数据集上对 HRFE 进行了测试,具体来说,数据集 I 和 BCI 竞赛 III。仅使用资产网格即可在对侧(右侧)运动皮层上创建脑皮层电图 (ECoG) 信号,这些信号记录在 BCI 竞赛 III 数据库中。

结果

使用 ECoG 信号,我们选择了对失真和分类选择影响最大的前 20 个特征。

与现有方法的比较

仿真结果表明,与文献中可比的特征选择方法相比,HRFE 在计算机视觉方面有显著增强,特别是对于 ECoG 信号,其可靠性约为 93%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验