Suppr超能文献

基于人工智能的乳腺结节分类:超声图像的定量形态学分析

Artificial intelligence-based classification of breast nodules: a quantitative morphological analysis of ultrasound images.

作者信息

Pan Hao, Shi Changbei, Zhang Yuxing, Zhong Zijian

机构信息

School of Electronic Information, Xijing University, Xi'an, China.

Department of Nuclear Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, China.

出版信息

Quant Imaging Med Surg. 2024 May 1;14(5):3381-3392. doi: 10.21037/qims-23-1652. Epub 2024 Apr 26.

Abstract

BACKGROUND

Accurate classification of breast nodules into benign and malignant types is critical for the successful treatment of breast cancer. Traditional methods rely on subjective interpretation, which can potentially lead to diagnostic errors. Artificial intelligence (AI)-based methods using the quantitative morphological analysis of ultrasound images have been explored for the automated and reliable classification of breast cancer. This study aimed to investigate the effectiveness of AI-based approaches for improving diagnostic accuracy and patient outcomes.

METHODS

In this study, a quantitative analysis approach was adopted, with a focus on five critical features for evaluation: degree of boundary regularity, clarity of boundaries, echo intensity, and uniformity of echoes. Furthermore, the classification results were assessed using five machine learning methods: logistic regression (LR), support vector machine (SVM), decision tree (DT), naive Bayes, and K-nearest neighbor (KNN). Based on these assessments, a multifeature combined prediction model was established.

RESULTS

We evaluated the performance of our classification model by quantifying various features of the ultrasound images and using the area under the receiver operating characteristic (ROC) curve (AUC). The moment of inertia achieved an AUC value of 0.793, while the variance and mean of breast nodule areas achieved AUC values of 0.725 and 0.772, respectively. The convexity and concavity achieved AUC values of 0.988 and 0.987, respectively. Additionally, we conducted a joint analysis of multiple features after normalization, achieving a recall value of 0.98, which surpasses most medical evaluation indexes on the market. To ensure experimental rigor, we conducted cross-validation experiments, which yielded no significant differences among the classifiers under 5-, 8-, and 10-fold cross-validation (P>0.05).

CONCLUSIONS

The quantitative analysis can accurately differentiate between benign and malignant breast nodules.

摘要

背景

准确将乳腺结节分为良性和恶性类型对于乳腺癌的成功治疗至关重要。传统方法依赖主观解读,这可能会导致诊断错误。基于人工智能(AI)的方法利用超声图像的定量形态分析已被探索用于乳腺癌的自动化和可靠分类。本研究旨在调查基于AI的方法在提高诊断准确性和患者治疗效果方面的有效性。

方法

在本研究中,采用了一种定量分析方法,重点关注五个关键评估特征:边界规则程度、边界清晰度、回声强度和回声均匀性。此外,使用五种机器学习方法评估分类结果:逻辑回归(LR)、支持向量机(SVM)、决策树(DT)、朴素贝叶斯和K近邻(KNN)。基于这些评估,建立了一个多特征组合预测模型。

结果

我们通过量化超声图像的各种特征并使用受试者操作特征(ROC)曲线下面积(AUC)来评估分类模型的性能。惯性矩的AUC值为0.793,而乳腺结节面积的方差和均值的AUC值分别为0.725和0.772。凸度和凹度的AUC值分别为0.988和0.987。此外,我们在归一化后对多个特征进行联合分析,召回值达到0.98,超过了市场上大多数医学评估指标。为确保实验严谨性,我们进行了交叉验证实验,在5折、8折和10折交叉验证下,分类器之间无显著差异(P>0.05)。

结论

定量分析可以准确区分良性和恶性乳腺结节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d222/11074741/d66b19ccb212/qims-14-05-3381-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验