Xiong Ziren, Wen Yao, Wang Hao, Zhang Xiaolin, Yin Lei, Cheng Ruiqing, Tu Yangyuan, He Jun
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Wuhan Institute of Quantum Technology, Wuhan, 430206, China.
Adv Mater. 2024 Jul;36(30):e2402435. doi: 10.1002/adma.202402435. Epub 2024 May 17.
III-V semiconductors possess high mobility, high frequency response, and detection sensitivity, making them potentially attractive for beyond-silicon electronics applications. However, the traditional heteroepitaxy of III-V semiconductors is impeded by a significant lattice mismatch and the necessity for extreme vacuum and high temperature conditions, thereby impeding their in situ compatibility with flexible substrates and silicon-based circuits. In this study, a novel approach is presented for fabricating ultrathin InSb single-crystal nanosheets on arbitrary substrates with a thickness as thin as 2.4 nm using low-thermal-budget van der Waals (vdW) epitaxy through chemical vapor deposition (CVD). In particular, in situ growth has been successfully achieved on both silicon-based substrates and flexible polyimide (PI) substrates. Notably, the growth temperature required for InSb nanosheets (240 °C) is significantly lower than that employed in back-end-of-line processes (400 °C). The field effect transistor devices based on fabricated ultrathin InSb nanosheets exhibit ultra-high on-off ratio exceeding 10 and demonstrate minimal gate leakage currents. Furthermore, these ultrathin InSb nanosheets display p-type characteristics with hole mobilities reaching up to 203 cm V s at room temperatures. This study paves the way for achieving heterogeneous integration of III-V semiconductors and facilitating their application in flexible electronics.
III-V族半导体具有高迁移率、高频响应和检测灵敏度,这使得它们在超越硅基电子器件的应用中具有潜在吸引力。然而,III-V族半导体的传统异质外延受到显著的晶格失配以及极端真空和高温条件的限制,从而阻碍了它们与柔性衬底和硅基电路的原位兼容性。在本研究中,提出了一种新颖的方法,通过化学气相沉积(CVD)利用低热预算范德华(vdW)外延在任意衬底上制备厚度薄至2.4纳米的超薄InSb单晶纳米片。特别是,已成功在硅基衬底和柔性聚酰亚胺(PI)衬底上实现了原位生长。值得注意的是,InSb纳米片所需的生长温度(240°C)明显低于后端工艺中使用的温度(400°C)。基于所制备的超薄InSb纳米片的场效应晶体管器件表现出超过10的超高开关比,并显示出最小的栅极漏电流。此外,这些超薄InSb纳米片在室温下呈现p型特性,空穴迁移率高达203 cm² V⁻¹ s⁻¹。本研究为实现III-V族半导体的异质集成并促进其在柔性电子学中的应用铺平了道路。