Suppr超能文献

基于人工智能的结直肠癌组织病理学图像的准确诊断。

Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence.

机构信息

Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.

Department of Pathology, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China.

出版信息

BMC Med. 2021 Mar 23;19(1):76. doi: 10.1186/s12916-021-01942-5.

Abstract

BACKGROUND

Accurate and robust pathological image analysis for colorectal cancer (CRC) diagnosis is time-consuming and knowledge-intensive, but is essential for CRC patients' treatment. The current heavy workload of pathologists in clinics/hospitals may easily lead to unconscious misdiagnosis of CRC based on daily image analyses.

METHODS

Based on a state-of-the-art transfer-learned deep convolutional neural network in artificial intelligence (AI), we proposed a novel patch aggregation strategy for clinic CRC diagnosis using weakly labeled pathological whole-slide image (WSI) patches. This approach was trained and validated using an unprecedented and enormously large number of 170,099 patches, > 14,680 WSIs, from > 9631 subjects that covered diverse and representative clinical cases from multi-independent-sources across China, the USA, and Germany.

RESULTS

Our innovative AI tool consistently and nearly perfectly agreed with (average Kappa statistic 0.896) and even often better than most of the experienced expert pathologists when tested in diagnosing CRC WSIs from multicenters. The average area under the receiver operating characteristics curve (AUC) of AI was greater than that of the pathologists (0.988 vs 0.970) and achieved the best performance among the application of other AI methods to CRC diagnosis. Our AI-generated heatmap highlights the image regions of cancer tissue/cells.

CONCLUSIONS

This first-ever generalizable AI system can handle large amounts of WSIs consistently and robustly without potential bias due to fatigue commonly experienced by clinical pathologists. It will drastically alleviate the heavy clinical burden of daily pathology diagnosis and improve the treatment for CRC patients. This tool is generalizable to other cancer diagnosis based on image recognition.

摘要

背景

结直肠癌(CRC)的准确且稳健的病理图像分析既耗时又需要专业知识,但对 CRC 患者的治疗至关重要。目前临床/医院病理学家的工作量繁重,可能会导致在日常图像分析中无意识地误诊 CRC。

方法

我们基于人工智能(AI)中一种先进的迁移学习深度卷积神经网络,提出了一种使用弱标注病理全切片图像(WSI)补丁进行临床 CRC 诊断的新补丁聚合策略。该方法使用前所未有的、数量巨大的 170099 个补丁、>14680 个 WSI 以及来自中国、美国和德国的多源的>9631 个病例,对 170099 个补丁、>14680 个 WSI 以及来自中国、美国和德国的多源的>9631 个病例进行了训练和验证,涵盖了多样化和有代表性的临床病例。

结果

我们的创新 AI 工具在诊断来自多中心的 CRC WSI 时,始终与(平均 Kappa 统计量为 0.896)甚至经常优于大多数经验丰富的病理学家高度一致,并且表现良好。AI 的平均接收者操作特征曲线下面积(AUC)大于病理学家(0.988 比 0.970),并且在 CRC 诊断中应用其他 AI 方法中表现最好。我们的 AI 生成的热图突出显示了癌症组织/细胞的图像区域。

结论

这是第一个可普遍应用的 AI 系统,可以一致且稳健地处理大量 WSI,而不会因临床病理学家常见的疲劳而产生潜在偏见。它将极大地减轻日常病理诊断的沉重负担,并改善 CRC 患者的治疗效果。该工具可推广到其他基于图像识别的癌症诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e58b/7986569/281c31e98446/12916_2021_1942_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验