Department of Biomedical Engineering, School of Basic Medical Science, Central South University, 410013, Changsha, Hunan, China.
Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
Nat Commun. 2021 Nov 2;12(1):6311. doi: 10.1038/s41467-021-26643-8.
Machine-assisted pathological recognition has been focused on supervised learning (SL) that suffers from a significant annotation bottleneck. We propose a semi-supervised learning (SSL) method based on the mean teacher architecture using 13,111 whole slide images of colorectal cancer from 8803 subjects from 13 independent centers. SSL (3150 labeled, ~40,950 unlabeled; ~6300 labeled, ~37,800 unlabeled patches) performs significantly better than the SL. No significant difference is found between SSL (6300 labeled, 37,800 unlabeled) and SL (44,100 labeled) at patch-level diagnoses (area under the curve (AUC): 0.980 ± 0.014 vs. 0.987 ± 0.008, P value = 0.134) and patient-level diagnoses (AUC: 0.974 ± 0.013 vs. 0.980 ± 0.010, P value = 0.117), which is close to human pathologists (average AUC: 0.969). The evaluation on 15,000 lung and 294,912 lymph node images also confirm SSL can achieve similar performance as that of SL with massive annotations. SSL dramatically reduces the annotations, which has great potential to effectively build expert-level pathological artificial intelligence platforms in practice.
机器辅助病理识别一直专注于监督学习 (SL),但存在大量注释的瓶颈。我们提出了一种基于平均教师架构的半监督学习 (SSL) 方法,使用了来自 13 个独立中心的 8803 名患者的 13111 张结直肠癌全幻灯片图像。SSL(3150 个标注,40950 个未标注;6300 个标注,37800 个未标注)的性能明显优于 SL。在斑块级诊断(曲线下面积(AUC):0.980 ± 0.014 vs. 0.987 ± 0.008,P 值 = 0.134)和患者级诊断(AUC:0.974 ± 0.013 vs. 0.980 ± 0.010,P 值 = 0.117)方面,SSL(6300 个标注,37800 个未标注)和 SL(~44100 个标注)之间没有发现显著差异,这与人类病理学家的结果相近(平均 AUC:0.969)。对 15000 张肺部图像和 294912 张淋巴结图像的评估也证实,SSL 可以达到与大量注释的 SL 相似的性能。SSL 显著减少了注释数量,这在实践中有效构建专家级病理人工智能平台方面具有巨大潜力。