Laboratory of Functional Genomics, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary.
Core Facility, HUN-REN Biological Research Centre, Szeged, Hungary.
Front Immunol. 2024 Apr 25;15:1376933. doi: 10.3389/fimmu.2024.1376933. eCollection 2024.
Systemic autoimmune diseases (SADs) are a significant burden on the healthcare system. Understanding the complexity of the peripheral immunophenotype in SADs may facilitate the differential diagnosis and identification of potential therapeutic targets.
Single-cell mass cytometric immunophenotyping was performed on peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and therapy-naive patients with rheumatoid arthritis (RA), progressive systemic sclerosis (SSc), and systemic lupus erythematosus (SLE). Immunophenotyping was performed on 15,387,165 CD45 live single cells from 52 participants (13 cases/group), using an antibody panel to detect 34 markers.
Using the t-SNE (t-distributed stochastic neighbor embedding) algorithm, the following 17 main immune cell types were determined: CD4/CD57 T cells, CD4/CD57 T cells, CD8/CD161 T cells, CD8/CD161/CD28 T cells, CD8 T cells, CD3/CD4/CD8 T cells, TCRγ/δ T cells, CD4 NKT cells, CD8 NKT cells, classic NK cells, CD56/CD98 cells, B cells, plasmablasts, monocytes, CD11cdim/CD172dim cells, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs). Seven of the 17 main cell types exhibited statistically significant frequencies in the investigated groups. The expression levels of the 34 markers in the main populations were compared between HCs and SADs. In summary, 59 scatter plots showed significant differences in the expression intensities between at least two groups. Next, each immune cell population was divided into subpopulations (metaclusters) using the FlowSOM (self-organizing map) algorithm. Finally, 121 metaclusters (MCs) of the 10 main immune cell populations were found to have significant differences to classify diseases. The single-cell T-cell heterogeneity represented 64MCs based on the expression of 34 markers, and the frequency of 23 MCs differed significantly between at least twoconditions. The CD3 non-T-cell compartment contained 57 MCs with 17 MCs differentiating at least two investigated groups. In summary, we are the first to demonstrate the complexity of the immunophenotype of 34 markers over 15 million single cells in HCs vs. therapy-naive patients with RA, SSc, and SLE. Disease specific population frequencies or expression patterns of peripheral immune cells provide a single-cell data resource to the scientific community.
系统性自身免疫性疾病(SADs)对医疗保健系统造成了重大负担。了解 SAD 外周免疫表型的复杂性可能有助于鉴别诊断和确定潜在的治疗靶点。
对来自健康对照(HCs)和未经治疗的类风湿关节炎(RA)、进行性系统性硬化症(SSc)和系统性红斑狼疮(SLE)患者的外周血单个核细胞(PBMCs)进行单细胞质量细胞术免疫表型分析。对 52 名参与者(每组 13 例)的 15387165 个 CD45 活单细胞进行免疫表型分析,使用抗体面板检测 34 个标记物。
使用 t-SNE(t 分布随机邻域嵌入)算法,确定了以下 17 种主要免疫细胞类型:CD4/CD57 T 细胞、CD4/CD57 T 细胞、CD8/CD161 T 细胞、CD8/CD161/CD28 T 细胞、CD8 T 细胞、CD3/CD4/CD8 T 细胞、TCRγ/δ T 细胞、CD4 NKT 细胞、CD8 NKT 细胞、经典 NK 细胞、CD56/CD98 细胞、B 细胞、浆母细胞、单核细胞、CD11cdim/CD172dim 细胞、髓样树突状细胞(mDCs)和浆细胞样树突状细胞(pDCs)。在研究组中,有 7 种主要细胞类型的频率具有统计学意义。比较了主要群体中 34 个标记物的表达水平。总体而言,在至少两个组之间的 59 个散点图中显示出表达强度的显著差异。接下来,使用 FlowSOM(自组织映射)算法将每个免疫细胞群划分为亚群(metaclusters)。最后,发现 10 个主要免疫细胞群中的 121 个 metaclusters(MCs)在疾病分类方面具有显著差异。基于 34 个标记物的表达,单细胞 T 细胞异质性代表了 64 个 MCs,至少有 23 个 MCs的频率在至少两种条件之间存在显著差异。CD3 非 T 细胞区室包含 57 个 MCs,其中 17 个 MCs可区分至少两个研究组。总之,我们首次证明了在 HCs 与未经治疗的 RA、SSc 和 SLE 患者之间,用 34 个标记物对超过 1500 万个单细胞的免疫表型的复杂性。外周免疫细胞的疾病特异性群体频率或表达模式为科学界提供了单细胞数据资源。