Suppr超能文献

转化免疫学:将基础发现应用于人类健康和自身免疫性疾病。

Translational immunology: Applying fundamental discoveries to human health and autoimmune diseases.

机构信息

Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Hospital, Seattle, WA, USA.

出版信息

Eur J Immunol. 2023 Dec;53(12):e2250197. doi: 10.1002/eji.202250197. Epub 2023 May 15.

Abstract

Studying the human immune system is challenging. These challenges stem from the complexity of the immune system itself, the heterogeneity of the immune system between individuals, and the many factors that lead to this heterogeneity including the influence of genetics, environment, and immune experience. Studies of the human immune system in the context of disease are increased in complexity as multiple combinations and variations in immune pathways can lead to a single disease. Thus, although individuals with a disease may share clinical features, the underlying disease mechanisms and resulting pathophysiology can be diverse among individuals with the same disease diagnosis. This has consequences for the treatment of diseases, as no single therapy will work for everyone, therapeutic efficacy varies among patients, and targeting a single immune pathway is rarely 100% effective. This review discusses how to address these challenges by identifying and managing the sources of variation, improving access to high-quality, well-curated biological samples by building cohorts, applying new technologies such as single-cell omics and imaging technologies to interrogate samples, and bringing to bear computational expertise in conjunction with immunologists and clinicians to interpret those results. The review has a focus on autoimmune diseases, including rheumatoid arthritis, MS, systemic lupus erythematosus, and type 1 diabetes, but its recommendations are also applicable to studies of other immune-mediated diseases.

摘要

研究人类免疫系统具有挑战性。这些挑战源于免疫系统本身的复杂性、个体间免疫系统的异质性,以及导致这种异质性的许多因素,包括遗传、环境和免疫经验的影响。在疾病背景下研究人类免疫系统的复杂性增加了,因为多种免疫途径的组合和变化可能导致单一疾病。因此,尽管患有某种疾病的个体可能具有相似的临床特征,但同一疾病诊断的个体之间潜在的疾病机制和导致的病理生理学可能存在差异。这对疾病的治疗产生了影响,因为没有一种单一的治疗方法适用于所有人,治疗效果在患者之间存在差异,而且针对单一免疫途径的治疗很少能达到 100%的效果。本文讨论了如何通过识别和管理变异源、通过建立队列来改善高质量、精心管理的生物样本的获取、应用单细胞组学和成像技术等新技术来检测样本以及结合计算专业知识与免疫学家和临床医生来解释这些结果来应对这些挑战。本文重点讨论了自身免疫性疾病,包括类风湿关节炎、多发性硬化症、系统性红斑狼疮和 1 型糖尿病,但它的建议也适用于其他免疫介导的疾病的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验