Patel Alok, Rantzos Chloe, Krikigianni Eleni, Rova Ulrika, Christakopoulos Paul, Matsakas Leonidas
Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.
Biotechnol Biofuels Bioprod. 2024 May 10;17(1):64. doi: 10.1186/s13068-024-02512-6.
Botryococcus braunii, a colonial green microalga which is well-known for its capacity to synthesize hydrocarbons, has significant promise as a long-term source of feedstock for the generation of biofuels. However, cultivating and scaling up B. braunii using conventional aqua-suspended cultivation systems remains a challenge. In this study, we optimized medium components and light intensity to enhance lipid and hydrocarbon production in a multi-cultivator airlift photobioreactor. BBM 3N medium with 200 μmol/m/s light intensity and a 16 h light-8 h dark regimen yielded the highest biomass productivity (110.00 ± 2.88 mg/L/day), as well as the highest lipid and hydrocarbon content. Cultivation in a flat-panel bioreactor resulted in significantly higher biomass productivity (129.11 ± 2.74 mg/L/day), lipid productivity (32.21 ± 1.31 mg/L/day), and hydrocarbon productivity (28.98 ± 2.08 mg/L/day) compared to cultivation in Erlenmeyer flasks and open 20-L raceway pond. It also exhibited 20.15 ± 1.03% of protein content including elevated levels of chlorophyll a, chlorophyll b, and carotenoids. This work is noteworthy since it is the first to describe fatty acid and hydrocarbon profiles of B. braunii during cobalt treatment. The study demonstrated that high cobalt concentrations (up to 5 mg/L of cobalt nitrate) during Botryococcus culture affected hydrocarbon synthesis, resulting in high amounts of n-alkadienes and trienes as well as lipids with elevated monounsaturated fatty acids concentration. Furthermore, pyrolysis experiments on microalgal green biomass and de-oiled biomass revealed the lipid and hydrocarbon compounds generated by the thermal degradation of B. braunii that facilitate extra economical value to this system.
布朗葡萄藻是一种群居性绿色微藻,以其合成碳氢化合物的能力而闻名,作为生物燃料生产的长期原料来源具有巨大潜力。然而,使用传统的水悬浮培养系统来培养和扩大布朗葡萄藻的规模仍然是一项挑战。在本研究中,我们优化了培养基成分和光照强度,以提高多培养器气升式光生物反应器中脂质和碳氢化合物的产量。使用200 μmol/m/s光照强度和16小时光照-8小时黑暗周期的BBM 3N培养基产生了最高的生物量生产力(110.00±2.88毫克/升/天),以及最高的脂质和碳氢化合物含量。与在锥形瓶和开放式20升跑道池中培养相比,在平板生物反应器中培养产生了显著更高的生物量生产力(129.11±2.74毫克/升/天)、脂质生产力(32.21±1.31毫克/升/天)和碳氢化合物生产力(28.98±2.08毫克/升/天)。它还表现出20.15±1.03%的蛋白质含量,包括叶绿素a、叶绿素b和类胡萝卜素水平的提高。这项工作值得注意,因为它首次描述了钴处理期间布朗葡萄藻的脂肪酸和碳氢化合物谱。该研究表明,布朗葡萄藻培养期间的高钴浓度(高达5毫克/升硝酸钴)影响了碳氢化合物的合成,导致大量的正链二烯烃和三烯烃以及单不饱和脂肪酸浓度升高的脂质。此外,对微藻绿色生物质和脱油生物质的热解实验揭示了布朗葡萄藻热降解产生的脂质和碳氢化合物化合物,这为该系统带来了额外的经济价值。