Suppr超能文献

3D打印磷酸钙镁楔体用于部分负荷缺损的体内研究

In Vivo Investigation of 3D-Printed Calcium Magnesium Phosphate Wedges in Partial Load Defects.

作者信息

Hemmerlein Elke, Vorndran Elke, Schmitt Anna-Maria, Feichtner Franziska, Waselau Anja-Christina, Meyer-Lindenberg Andrea

机构信息

Clinic for Small Animal Surgery and Reproduction, Ludwig Maximilians University Munich, 80539 Munich, Germany.

Department for Functional Materials in Medicine and Dentistry, University of Würzburg, 97070 Würzburg, Germany.

出版信息

Materials (Basel). 2024 May 2;17(9):2136. doi: 10.3390/ma17092136.

Abstract

Bone substitutes are ideally biocompatible, osteoconductive, degradable and defect-specific and provide mechanical stability. Magnesium phosphate cements (MPCs) offer high initial stability and faster degradation compared to the well-researched calcium phosphate cements (CPCs). Calcium magnesium phosphate cements (CMPCs) should combine the properties of both and have so far shown promising results. The present study aimed to investigate and compare the degradation and osseointegration behavior of 3D powder-printed wedges of CMPC and MPC in vivo. The wedges were post-treated with phosphoric acid (CMPC) and diammonium hydrogen phosphate (MPC) and implanted in a partially loaded defect model in the proximal rabbit tibia. The evaluation included clinical, in vivo µ-CT and X-ray examinations, histology, energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) for up to 30 weeks. SEM analysis revealed a zone of unreacted material in the MPC, indicating the need to optimize the manufacturing and post-treatment process. However, all materials showed excellent biocompatibility and mechanical stability. After 24 weeks, they were almost completely degraded. The slower degradation rate of the CMPC corresponded more favorably to the bone growth rate compared to the MPC. Due to the promising results of the CMPC in this study, it should be further investigated, for example in defect models with higher load.

摘要

骨替代物理想情况下应具有生物相容性、骨传导性、可降解性且针对特定缺损,并能提供机械稳定性。与研究充分的磷酸钙骨水泥(CPC)相比,磷酸镁骨水泥(MPC)具有较高的初始稳定性和更快的降解速度。磷酸钙镁骨水泥(CMPC)应兼具两者的特性,目前已显示出有前景的结果。本研究旨在调查和比较3D粉末打印的CMPC和MPC楔形物在体内的降解和骨整合行为。这些楔形物分别用磷酸(CMPC)和磷酸氢二铵(MPC)进行后处理,然后植入兔胫骨近端的部分负重缺损模型中。评估包括临床、体内显微CT和X射线检查、组织学、能量色散X射线分析(EDX)以及扫描电子显微镜(SEM)检查,时间长达30周。SEM分析显示MPC中有未反应材料区域,这表明需要优化制造和后处理工艺。然而,所有材料均表现出优异的生物相容性和机械稳定性。24周后,它们几乎完全降解。与MPC相比,CMPC较慢的降解速率与骨生长速率更相符。鉴于本研究中CMPC的结果很有前景,应进一步开展研究,例如在更高负荷的缺损模型中进行研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dad/11085615/0f9698ad0e7e/materials-17-02136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验