文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

雾化对用于肺部递药的聚合物-脂质杂化纳米粒子的理化性质的影响。

Impact of Nebulization on the Physicochemical Properties of Polymer-Lipid Hybrid Nanoparticles for Pulmonary Drug Delivery.

机构信息

Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.

Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA.

出版信息

Int J Mol Sci. 2024 May 5;25(9):5028. doi: 10.3390/ijms25095028.


DOI:10.3390/ijms25095028
PMID:38732246
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11084240/
Abstract

Nanoparticles (NPs) have shown significant potential for pulmonary administration of therapeutics for the treatment of chronic lung diseases in a localized and sustained manner. Nebulization is a suitable method of NP delivery, particularly in patients whose ability to breathe is impaired due to lung diseases. However, there are limited studies evaluating the physicochemical properties of NPs after they are passed through a nebulizer. High shear stress generated during nebulization could potentially affect the surface properties of NPs, resulting in the loss of encapsulated drugs and alteration in the release kinetics. Herein, we thoroughly examined the physicochemical properties as well as the therapeutic effectiveness of Infasurf lung surfactant (IFS)-coated PLGA NPs previously developed by us after passing through a commercial Aeroneb vibrating-mesh nebulizer. Nebulization did not alter the size, surface charge, IFS coating and bi-phasic release pattern exhibited by the NPs. However, there was a temporary reduction in the initial release of encapsulated therapeutics in the nebulized compared to non-nebulized NPs. This underscores the importance of evaluating the drug release kinetics of NPs using the inhalation method of choice to ensure suitability for the intended medical application. The cellular uptake studies demonstrated that both nebulized and non-nebulized NPs were less readily taken up by alveolar macrophages compared to lung cancer cells, confirming the IFS coating retention. Overall, nebulization did not significantly compromise the physicochemical properties as well as therapeutic efficacy of the prepared nanotherapeutics.

摘要

纳米颗粒(NPs)具有通过肺部局部和持续给药治疗慢性肺部疾病的巨大潜力。雾化是一种合适的 NP 传递方法,特别是对于那些由于肺部疾病而呼吸能力受损的患者。然而,目前评估 NP 在通过雾化器后理化性质的研究有限。在雾化过程中产生的高剪切应力可能会影响 NP 的表面性质,导致包封药物的损失和释放动力学的改变。在此,我们彻底研究了先前由我们开发的包裹有 Infasurf 肺表面活性剂(IFS)的 PLGA NPs 在通过商业 Aeroneb 振动网孔雾化器后,其理化性质和治疗效果。雾化处理并没有改变 NP 的大小、表面电荷、IFS 涂层和双相释放模式。然而,与非雾化 NP 相比,雾化 NP 中包封药物的初始释放暂时减少。这突显了使用所选吸入方法评估 NP 药物释放动力学的重要性,以确保其适用于预期的医疗应用。细胞摄取研究表明,与肺癌细胞相比,雾化和非雾化 NP 均不易被肺泡巨噬细胞摄取,这证实了 IFS 涂层的保留。总的来说,雾化处理没有显著损害所制备纳米药物的理化性质和治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/5f07b9aa6cac/ijms-25-05028-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/1ed99b734351/ijms-25-05028-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/35c1243ccb82/ijms-25-05028-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/5eec4aa3c507/ijms-25-05028-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/82b158282020/ijms-25-05028-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/ad211eb47e53/ijms-25-05028-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/5f07b9aa6cac/ijms-25-05028-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/1ed99b734351/ijms-25-05028-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/35c1243ccb82/ijms-25-05028-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/5eec4aa3c507/ijms-25-05028-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/82b158282020/ijms-25-05028-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/ad211eb47e53/ijms-25-05028-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c54/11084240/5f07b9aa6cac/ijms-25-05028-g006.jpg

相似文献

[1]
Impact of Nebulization on the Physicochemical Properties of Polymer-Lipid Hybrid Nanoparticles for Pulmonary Drug Delivery.

Int J Mol Sci. 2024-5-5

[2]
PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization.

Int J Pharm. 2014-1-30

[3]
Nebulised surface-active hybrid nanoparticles of voriconazole for pulmonary Aspergillosis demonstrate clathrin-mediated cellular uptake, improved antifungal efficacy and lung retention.

J Nanobiotechnology. 2021-1-11

[4]
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].

Zhonghua Jie He He Hu Xi Za Zhi. 2024-2-12

[5]
Impact of nebulizers on nanoparticles-based gene delivery efficiency: and comparison of jet and mesh nebulizers using branched-polyethyleneimine.

Drug Deliv. 2025-12

[6]
Mechanistic profiling of the release kinetics of siRNA from lipidoid-polymer hybrid nanoparticles in vitro and in vivo after pulmonary administration.

J Control Release. 2019-8-6

[7]
Anticancer drug delivery: Investigating the impacts of viscosity on lipid-based formulations for pulmonary targeting.

Int J Pharm. 2024-10-25

[8]
Physical stability and aerosol properties of liposomes delivered using an air-jet nebulizer and a novel micropump device with large mesh apertures.

Int J Pharm. 2007-4-4

[9]
Formulations generated from ethanol-based proliposomes for delivery via medical nebulizers.

J Pharm Pharmacol. 2006-7

[10]
Lyophilization and nebulization of pulmonary surfactant-coated nanogels for siRNA inhalation therapy.

Eur J Pharm Biopharm. 2020-12

引用本文的文献

[1]
Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases.

Pharmaceutics. 2025-7-9

[2]
[Advances in inhalable nano-formulations].

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2025-7-3

[3]
Formulation and clinical translation of inhalable nanomedicines for the treatment and prevention of pulmonary infectious diseases.

Drug Deliv Transl Res. 2025-4-29

[4]
Development and Evaluation of Aloperine-Loaded Nanostructured Lipid Carriers for the Treatment of Pulmonary Arterial Hypertension.

Int J Nanomedicine. 2025-1-21

本文引用的文献

[1]
Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions.

Diagnostics (Basel). 2023-9-15

[2]
Development and characterization of lung surfactant-coated polymer nanoparticles for pulmonary drug delivery.

Biomater Adv. 2023-7

[3]
Surfactant Proteins SP-B and SP-C in Pulmonary Surfactant Monolayers: Physical Properties Controlled by Specific Protein-Lipid Interactions.

Langmuir. 2023-3-28

[4]
Pulmonary drug delivery: an effective and convenient delivery route to combat COVID-19.

Drug Deliv Transl Res. 2023-3

[5]
Pulmonary drug delivery and retention: A computational study to identify plausible parameters based on a coupled airway-mucus flow model.

PLoS Comput Biol. 2022-6

[6]
Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications.

Pharm Res. 2022-11

[7]
Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections.

Drug Deliv Transl Res. 2021-8

[8]
Pulmonary surfactant inhibition of nanoparticle uptake by alveolar epithelial cells.

Sci Rep. 2020-11-10

[9]
Formulation, Cellular Uptake and Cytotoxicity of Thymoquinone-Loaded PLGA Nanoparticles in Malignant Melanoma Cancer Cells.

Int J Nanomedicine. 2020-10-20

[10]
In Vitro Evaluation of a Vibrating-Mesh Nebulizer Repeatedly Use over 28 Days.

Pharmaceutics. 2020-10-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索