Suppr超能文献

基于中值绝对偏差的混凝土裂缝图像检测方法

Image-Based Concrete Crack Detection Method Using the Median Absolute Deviation.

作者信息

Avendaño Juan Camilo, Leander John, Karoumi Raid

机构信息

Division of Structural Engineering and Bridges, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.

出版信息

Sensors (Basel). 2024 Apr 25;24(9):2736. doi: 10.3390/s24092736.

Abstract

This paper proposes an innovative approach for detecting and quantifying concrete cracks using an adaptive threshold method based on Median Absolute Deviation (MAD) in images. The technique applies limited pre-processing steps and then dynamically determines a threshold adapted for each sub-image depending on the greyscale distribution of the pixels, resulting in tailored crack segmentation. The edges of the crack are obtained using the Laplace edge detection method, and the width of the crack is obtained for each centreline point. The method's performance is measured using the Probability of Detection (POD) curves as a function of the actual crack size, revealing remarkable capabilities. It was found that the proposed method could detect cracks as narrow as 0.1 mm, with a probability of 94% and 100% for cracks with larger widths. It was also found that the method has higher accuracy, precision, and F2 score values than the Otsu and Niblack methods.

摘要

本文提出了一种创新方法,用于在图像中使用基于中位数绝对偏差(MAD)的自适应阈值方法检测和量化混凝土裂缝。该技术应用有限的预处理步骤,然后根据像素的灰度分布动态确定适用于每个子图像的阈值,从而实现定制的裂缝分割。使用拉普拉斯边缘检测方法获取裂缝的边缘,并为每个中心线点获取裂缝的宽度。该方法的性能通过检测概率(POD)曲线作为实际裂缝尺寸的函数来衡量,显示出显著的能力。研究发现,所提出的方法能够检测出窄至0.1毫米的裂缝,对于较宽裂缝的检测概率分别为94%和100%。还发现该方法比大津法和尼布莱克法具有更高的准确度、精度和F2分数值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d81/11086315/2743867d9d4e/sensors-24-02736-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验