Suppr超能文献

基于深度学习的混凝土裂缝/非裂缝分类中缺失细传播裂缝的快速检测。

Fast Detection of Missing Thin Propagating Cracks during Deep-Learning-Based Concrete Crack/Non-Crack Classification.

机构信息

School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Smart Convergence Research Department, Power Technology Research Institute, KEPCO E & C, Gimcheon 39660, Republic of Korea.

出版信息

Sensors (Basel). 2023 Jan 27;23(3):1419. doi: 10.3390/s23031419.

Abstract

Existing deep learning (DL) models can detect wider or thicker segments of cracks that occupy multiple pixels in the width direction, but fail to distinguish the thin tail shallow segment or propagating crack occupying fewer pixels. Therefore, in this study, we proposed a scheme for tracking missing thin/propagating crack segments during DL-based crack identification on concrete surfaces in a computationally efficient manner. The proposed scheme employs image processing as a preprocessor and a postprocessor for a 1D DL model. Image-processing-assisted DL as a precursor to DL eliminates labor-intensive labeling and the plane structural background without any distinguishable features during DL training and testing; the model identifies potential crack candidate regions. Iterative differential sliding-window-based local image processing as a postprocessor to DL tracks missing thin cracks on segments classified as cracks. The capability of the proposed method is demonstrated on low-resolution images with cracks of single-pixel width, captured using unmanned aerial vehicles on concrete structures with different surface textures, different scenes with complicated disturbances, and optical variability. Due to the multi-threshold-based image processing, the overall approach is invariant to the choice of initial sensitivity parameters, hyperparameters, and the sequence of neuron arrangement. Further, this technique is a computationally efficient alternative to semantic segmentation that results in pixelated mapping/classification of thin crack regimes, which requires labor-intensive and skilled labeling.

摘要

现有的深度学习 (DL) 模型可以检测占据多个像素宽度的较宽或较厚的裂缝段,但无法区分占用较少像素的细尾浅层段或扩展裂缝。因此,在这项研究中,我们提出了一种在基于 DL 的混凝土表面裂缝识别中,以计算效率的方式跟踪缺失的细/扩展裂缝段的方案。该方案采用图像处理作为 1D DL 模型的预处理和后处理。图像辅助的 DL 作为 DL 的前奏,在 DL 训练和测试过程中消除了劳动密集型的标记和没有任何可区分特征的平面结构背景;该模型识别潜在的裂缝候选区域。作为 DL 的后处理,基于迭代差分滑动窗口的局部图像处理跟踪被分类为裂缝的段上缺失的细裂缝。所提出方法的能力在具有单像素宽度裂缝的低分辨率图像上得到了验证,这些图像是使用无人机在具有不同表面纹理、不同具有复杂干扰的场景和光学可变性的混凝土结构上捕获的。由于基于多阈值的图像处理,总体方法对初始灵敏度参数、超参数和神经元排列顺序的选择是不变的。此外,这种技术是语义分割的一种计算效率替代方案,它导致细裂缝区域的像素化映射/分类,这需要劳动密集型和熟练的标记。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9558/9919036/052d359538b0/sensors-23-01419-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验