Jemal Imene, Abou-Abbas Lina, Henni Khadidja, Mitiche Amar, Mezghani Neila
Centre EMT, Institut National de la Recherche Scientifique, Montréal, QC, Canada.
Institute of Applied Artificial Intelligence (I2A), Université TÉLUQ, Montréal, QC, Canada.
Front Neuroinform. 2024 Feb 2;18:1303380. doi: 10.3389/fninf.2024.1303380. eCollection 2024.
The ability to predict the occurrence of an epileptic seizure is a safeguard against patient injury and health complications. However, a major challenge in seizure prediction arises from the significant variability observed in patient data. Common patient-specific approaches, which apply to each patient independently, often perform poorly for other patients due to the data variability. The aim of this study is to propose deep learning models which can handle this variability and generalize across various patients. This study addresses this challenge by introducing a novel cross-subject and multi-subject prediction models. Multiple-subject modeling broadens the scope of patient-specific modeling to account for the data from a dedicated ensemble of patients, thereby providing some useful, though relatively modest, level of generalization. The basic neural network architecture of this model is then adapted to cross-subject prediction, thereby providing a broader, more realistic, context of application. For accrued performance, and generalization ability, cross-subject modeling is enhanced by domain adaptation. Experimental evaluation using the publicly available CHB-MIT and SIENA data datasets shows that our multiple-subject model achieved better performance compared to existing works. However, the cross-subject faces challenges when applied to different patients. Finally, through investigating three domain adaptation methods, the model accuracy has been notably improved by 10.30% and 7.4% for the CHB-MIT and SIENA datasets, respectively.
预测癫痫发作的发生能力是预防患者受伤和健康并发症的保障。然而,癫痫发作预测的一个主要挑战源于患者数据中观察到的显著变异性。常见的针对特定患者的方法,即独立应用于每个患者的方法,由于数据变异性,对其他患者的效果往往不佳。本研究的目的是提出能够处理这种变异性并在不同患者中通用的深度学习模型。本研究通过引入一种新颖的跨主体和多主体预测模型来应对这一挑战。多主体建模拓宽了特定患者建模的范围,以考虑来自一组特定患者的数据,从而提供了一定程度的、虽相对有限但有用的通用性。然后,该模型的基本神经网络架构被调整用于跨主体预测,从而提供了更广泛、更现实的应用背景。为了提高性能和泛化能力,通过域适应来增强跨主体建模。使用公开可用的CHB - MIT和SIENA数据数据集进行的实验评估表明,我们的多主体模型与现有工作相比取得了更好的性能。然而,跨主体模型应用于不同患者时面临挑战。最后,通过研究三种域适应方法,CHB - MIT和SIENA数据集的模型准确率分别显著提高了10.30%和7.4%。