Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian 361000, People's Republic of China.
Department of Endocrinology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361000, People's Republic of China.
Radiother Oncol. 2024 Jul;196:110325. doi: 10.1016/j.radonc.2024.110325. Epub 2024 May 10.
We performed this systematic review and meta-analysis to investigate the performance of ML in detecting genetic mutation status in NSCLC patients.
We conducted a systematic search of PubMed, Cochrane, Embase, and Web of Science up until July 2023. We discussed the genetic mutation status of EGFR, ALK, KRAS, and BRAF, as well as the mutation status at different sites of EGFR.
We included a total of 128 original studies, of which 114 constructed ML models based on radiomic features mainly extracted from CT, MRI, and PET-CT data. From a genetic mutation perspective, 121 studies focused on EGFR mutation status analysis. In the validation set, for the detection of EGFR mutation status, the aggregated c-index was 0.760 (95%CI: 0.706-0.814) for clinical feature-based models, 0.772 (95%CI: 0.753-0.791) for CT-based radiomics models, 0.816 (95%CI: 0.776-0.856) for MRI-based radiomics models, and 0.750 (95%CI: 0.712-0.789) for PET-CT-based radiomics models. When combined with clinical features, the aggregated c-index was 0.807 (95%CI: 0.781-0.832) for CT-based radiomics models, 0.806 (95%CI: 0.773-0.839) for MRI-based radiomics models, and 0.822 (95%CI: 0.789-0.854) for PET-CT-based radiomics models. In the validation set, the aggregated c-indexes for radiomics-based models to detect mutation status of ALK and KRAS, as well as the mutation status at different sites of EGFR were all greater than 0.7.
The use of radiomics-based methods for early discrimination of EGFR mutation status in NSCLC demonstrates relatively high accuracy. However, the influence of clinical variables cannot be overlooked in this process. In addition, future studies should also pay attention to the accuracy of radiomics in identifying mutation status of other genes in EGFR.
我们进行了这项系统评价和荟萃分析,旨在研究机器学习(ML)在检测非小细胞肺癌(NSCLC)患者基因突变状态方面的性能。
我们对 PubMed、Cochrane、Embase 和 Web of Science 进行了系统检索,检索时间截至 2023 年 7 月。我们讨论了 EGFR、ALK、KRAS 和 BRAF 的基因突变状态,以及 EGFR 不同部位的突变状态。
我们共纳入了 128 项原始研究,其中 114 项研究主要基于 CT、MRI 和 PET-CT 数据提取的放射组学特征构建了 ML 模型。从基因突变角度来看,121 项研究侧重于 EGFR 突变状态分析。在验证集中,对于 EGFR 突变状态的检测,基于临床特征的模型的综合 c 指数为 0.760(95%CI:0.706-0.814),基于 CT 的放射组学模型为 0.772(95%CI:0.753-0.791),基于 MRI 的放射组学模型为 0.816(95%CI:0.776-0.856),基于 PET-CT 的放射组学模型为 0.750(95%CI:0.712-0.789)。当与临床特征相结合时,基于 CT 的放射组学模型的综合 c 指数为 0.807(95%CI:0.781-0.832),基于 MRI 的放射组学模型为 0.806(95%CI:0.773-0.839),基于 PET-CT 的放射组学模型为 0.822(95%CI:0.789-0.854)。在验证集中,放射组学模型检测 ALK 和 KRAS 突变状态以及 EGFR 不同部位突变状态的综合 c 指数均大于 0.7。
放射组学方法早期鉴别 NSCLC 中 EGFR 突变状态具有较高的准确性,但在这一过程中不能忽视临床变量的影响。此外,未来的研究还应关注放射组学在识别 EGFR 中其他基因的突变状态方面的准确性。