Suppr超能文献

应用地理空间多智能体系统对结核病传播的各个方面进行建模。

Applying geospatial multi-agent system to model various aspects of tuberculosis transmission.

作者信息

Vyklyuk Yaroslav, Semianiv Ihor, Nevinskyi Denys, Todoriko Lilia, Boyko Nataliya

机构信息

Lviv Polytechnic National University, The Department of Artificial Intelligence, Lviv, Ukraine.

Bukovinian State Medical University, The Department of Pathobiology and Pulmonology, Chernivtsi, Ukraine.

出版信息

New Microbes New Infect. 2024 Apr 27;59:101417. doi: 10.1016/j.nmni.2024.101417. eCollection 2024 Jun.

Abstract

INTRODUCTION

The paper presents epidemiological process modeling, with a focus on tuberculosis utilizing multi-agent system.

MATERIAL AND METHODS

This study involves the development of an algorithm that harnesses the potential of artificial intelligence to create a geospatial model that highlights the different pathways of TB transmission. The modeling process itself is characterized by a series of key stages, including initialization of the city, calibration of health parameters, simulation of the working day, propagation of the spread of infection, the evolution of disease trajectories, rigorous statistical calculations and transition to the following day. A comprehensive description of the course of active tuberculosis is presented, following the official hypothesis recommended by the World Health Organization. A comprehensive simulation, illustrating the propagation of tuberculosis in an entirely healthy environment devoid of any preventive or therapeutic measures, is presented. To ascertain the adequacy of the model and its sensitivity to the principal parameters governing the course of tuberculosis, a series of experiments were meticulously conducted, employing three distinct approximations, namely: the basic model, the model incorporating mortality factors, and the comprehensive model, encompassing all relevant aspects.

CONCLUSIONS

The model's results exhibit stability and lack of significant fluctuations. The statistical values obtained for infected, latent, and recovered individuals align well with known medical data, confirming the model's adequacy.

摘要

引言

本文介绍了流行病学过程建模,重点是利用多智能体系统对结核病进行建模。

材料与方法

本研究涉及开发一种算法,该算法利用人工智能的潜力创建一个地理空间模型,突出结核病传播的不同途径。建模过程本身具有一系列关键阶段,包括城市初始化、健康参数校准、工作日模拟、感染传播、疾病轨迹演变、严格的统计计算以及过渡到次日。按照世界卫生组织推荐的官方假设,对活动性结核病的病程进行了全面描述。给出了一个全面的模拟,展示了在没有任何预防或治疗措施的完全健康环境中结核病的传播情况。为了确定模型的充分性及其对控制结核病病程的主要参数的敏感性,精心进行了一系列实验,采用了三种不同的近似方法,即:基本模型、纳入死亡率因素的模型以及涵盖所有相关方面的综合模型。

结论

模型结果显示出稳定性且无明显波动。感染、潜伏和康复个体的统计值与已知医学数据吻合良好,证实了模型的充分性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fa/11088189/6b60eb1298cb/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验