Suppr超能文献

肺腺癌患者表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKIs)原发耐药危险因素的识别及风险预测模型的构建:一项病例对照研究

Identification of risk factors of EGFR-TKIs primary resistance in lung adenocarcinoma patients and construction of a risk predictive model: a case-control study.

作者信息

Zhang Hong, Cao Chenlin, Xiong Hua

机构信息

Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of the Second Clinical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Transl Cancer Res. 2024 Apr 30;13(4):1762-1772. doi: 10.21037/tcr-23-2172. Epub 2024 Apr 1.

Abstract

BACKGROUND

Lung cancer is one of the malignancies with the highest incidence and mortality rates. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are recommended as the first-line treatment for patients with EGFR-mutated lung adenocarcinoma (LUAD). However, some patients with EGFR-sensitive mutations develop primary resistance to EGFR-TKIs. This study aims to analyze the clinical characteristics of LUAD patients with primary resistance to EGFR-TKIs, identify independent risk factors for primary resistance, and establish a risk predictive model to provide reference for clinical decision-making.

METHODS

We collected data from LUAD patients with EGFR-sensitive mutations (19del/21L858R) who were hospitalized in our institution between 2020 and 2022 and received first-generation EGFR-TKIs with follow-up exceeding 6 months. These patients were categorized into primary resistance and sensitive groups based on treatment outcomes. We compared general clinical data, laboratory tests, and tumor-related characteristics between the two groups, analyzed risk factors for primary resistance to EGFR-TKIs, and constructed a risk predictive model. The model's predictive value was comprehensively assessed using receiver operating characteristic (ROC) curves, calibration curves, and decision curves.

RESULTS

Serum neuron-specific enolase (NSE) concentration (P=0.03), serum pro-gastrin-releasing peptide (ProGRP) concentration (P=0.01), and Ki67 expression (P<0.001) were identified as independent risk factors for primary resistance to EGFR-TKIs in LUAD. The combined presence of these three risk factors had the highest predictive value [area under the curve (AUC) =0.975, P<0.001]. We constructed a predictive model for the risk of primary resistance to EGFR-TKIs in LUAD patients, incorporating these three parameters, and represented it through a visually interpretable nomogram. The calibration curve of the nomogram demonstrated its strong predictive ability. Further decision curve analysis indicated the model's clinical utility.

CONCLUSIONS

Based on a single-center retrospective case-control study, we identified serum NSE concentration, ProGRP concentration, and Ki67 expression as independent risk factors for primary resistance to EGFR-TKIs in LUAD patients. We constructed and validated a risk predictive model based on these findings. This predictive model holds promise for clinical application, aiding in the development of personalized treatment strategies and providing a scientific basis for early identification of primary resistance patients.

摘要

背景

肺癌是发病率和死亡率最高的恶性肿瘤之一。表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKIs)被推荐作为表皮生长因子受体(EGFR)突变的肺腺癌(LUAD)患者的一线治疗药物。然而,一些具有EGFR敏感突变的患者会对EGFR-TKIs产生原发性耐药。本研究旨在分析对EGFR-TKIs产生原发性耐药的LUAD患者的临床特征,确定原发性耐药的独立危险因素,并建立风险预测模型,为临床决策提供参考。

方法

我们收集了2020年至2022年期间在我院住院并接受第一代EGFR-TKIs治疗且随访超过6个月的具有EGFR敏感突变(19del/21L858R)的LUAD患者的数据。根据治疗结果将这些患者分为原发性耐药组和敏感组。我们比较了两组之间的一般临床数据、实验室检查和肿瘤相关特征,分析了EGFR-TKIs原发性耐药的危险因素,并构建了风险预测模型。使用受试者工作特征(ROC)曲线、校准曲线和决策曲线对模型的预测价值进行了综合评估。

结果

血清神经元特异性烯醇化酶(NSE)浓度(P=0.03)、血清胃泌素释放肽前体(ProGRP)浓度(P=0.01)和Ki67表达(P<0.001)被确定为LUAD患者对EGFR-TKIs原发性耐药的独立危险因素。这三个危险因素共同存在时具有最高的预测价值[曲线下面积(AUC)=0.975,P<0.001]。我们构建了一个包含这三个参数的LUAD患者对EGFR-TKIs原发性耐药风险的预测模型,并通过直观可解释的列线图表示。列线图的校准曲线显示了其强大的预测能力。进一步的决策曲线分析表明了该模型的临床实用性。

结论

基于单中心回顾性病例对照研究,我们确定血清NSE浓度、ProGRP浓度和Ki67表达为LUAD患者对EGFR-TKIs原发性耐药的独立危险因素。基于这些发现,我们构建并验证了一个风险预测模型。该预测模型具有临床应用前景,有助于制定个性化治疗策略,并为早期识别原发性耐药患者提供科学依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验