Islamuddin Mohammad, Qin Xuebin
Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA, 70433, USA.
Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
Cell Death Discov. 2024 May 13;10(1):229. doi: 10.1038/s41420-024-01996-3.
Macrophages are exceptionally diversified cell types and perform unique features and functions when exposed to different stimuli within the specific microenvironment of various kidney diseases. In instances of kidney tissue necrosis or infection, specific patterns associated with damage or pathogens prompt the development of pro-inflammatory macrophages (M1). These M1 macrophages contribute to exacerbating tissue damage, inflammation, and eventual fibrosis. Conversely, anti-inflammatory macrophages (M2) arise in the same circumstances, contributing to kidney repair and regeneration processes. Impaired tissue repair causes fibrosis, and hence macrophages play a protective and pathogenic role. In response to harmful stimuli within the body, inflammasomes, complex assemblies of multiple proteins, assume a pivotal function in innate immunity. The initiation of inflammasomes triggers the activation of caspase 1, which in turn facilitates the maturation of cytokines, inflammation, and cell death. Macrophages in the kidneys possess the complete elements of the NLRP3 inflammasome, including NLRP3, ASC, and pro-caspase-1. When the NLRP3 inflammasomes are activated, it triggers the activation of caspase-1, resulting in the release of mature proinflammatory cytokines (IL)-1β and IL-18 and cleavage of Gasdermin D (GSDMD). This activation process therefore then induces pyroptosis, leading to renal inflammation, cell death, and renal dysfunction. The NLRP3-ASC-caspase-1-IL-1β-IL-18 pathway has been identified as a factor in the development of the pathophysiology of numerous kidney diseases. In this review, we explore current progress in understanding macrophage behavior concerning inflammation, injury, and fibrosis in kidneys. Emphasizing the pivotal role of activated macrophages in both the advancement and recovery phases of renal diseases, the article delves into potential strategies to modify macrophage functionality and it also discusses emerging approaches to selectively target NLRP3 inflammasomes and their signaling components within the kidney, aiming to facilitate the healing process in kidney diseases.
巨噬细胞是极具多样性的细胞类型,当暴露于各种肾脏疾病的特定微环境中的不同刺激时,会表现出独特的特征和功能。在肾脏组织坏死或感染的情况下,与损伤或病原体相关的特定模式会促使促炎性巨噬细胞(M1)的形成。这些M1巨噬细胞会加剧组织损伤、炎症以及最终的纤维化。相反,抗炎性巨噬细胞(M2)也在相同情况下产生,有助于肾脏的修复和再生过程。组织修复受损会导致纤维化,因此巨噬细胞发挥着保护和致病的作用。响应体内的有害刺激,炎性小体(多种蛋白质的复杂集合体)在先天免疫中发挥关键作用。炎性小体的激活会触发半胱天冬酶1的活化,进而促进细胞因子的成熟、炎症反应和细胞死亡。肾脏中的巨噬细胞拥有NLRP3炎性小体的完整成分,包括NLRP3、ASC和前半胱天冬酶-1。当NLRP3炎性小体被激活时,会触发半胱天冬酶-1的活化,导致成熟的促炎细胞因子(IL)-1β和IL-18的释放以及Gasdermin D(GSDMD)的裂解。因此,这种激活过程会诱导细胞焦亡,导致肾脏炎症、细胞死亡和肾功能障碍。NLRP3-ASC-半胱天冬酶-1-IL-1β-IL-18通路已被确定为众多肾脏疾病病理生理学发展中的一个因素。在本综述中,我们探讨了目前在理解巨噬细胞在肾脏炎症、损伤和纤维化方面的行为的进展。强调活化巨噬细胞在肾脏疾病进展和恢复阶段的关键作用,本文深入探讨了改变巨噬细胞功能的潜在策略,还讨论了选择性靶向肾脏内NLRP3炎性小体及其信号成分的新方法,旨在促进肾脏疾病的愈合过程。