McColl Kit, Coles Samuel W, Zarabadi-Poor Pezhman, Morgan Benjamin J, Islam M Saiful
Department of Chemistry, University of Bath, Bath, UK.
The Faraday Institution, Harwell Science and Innovation Campus, Didcot, UK.
Nat Mater. 2024 Jun;23(6):826-833. doi: 10.1038/s41563-024-01873-5. Epub 2024 May 13.
Lithium-rich oxide cathodes lose energy density during cycling due to atomic disordering and nanoscale structural rearrangements, which are both challenging to characterize. Here we resolve the kinetics and thermodynamics of these processes in an exemplar layered Li-rich (LiMnO) cathode using a combined approach of ab initio molecular dynamics and cluster expansion-based Monte Carlo simulations. We identify a kinetically accessible and thermodynamically favourable mechanism to form O molecules in the bulk, involving Mn migration and driven by interlayer oxygen dimerization. At the top of charge, the bulk structure locally phase segregates into MnO-rich regions and Mn-deficient nanovoids, which contain O molecules as a nanoconfined fluid. These nanovoids are connected in a percolating network, potentially allowing long-range oxygen transport and linking bulk O formation to surface O loss. These insights highlight the importance of developing strategies to kinetically stabilize the bulk structure of Li-rich O-redox cathodes to maintain their high energy densities.
富含锂的氧化物阴极在循环过程中由于原子无序和纳米级结构重排而损失能量密度,这两者的表征都具有挑战性。在这里,我们使用从头算分子动力学和基于团簇展开的蒙特卡罗模拟相结合的方法,解析了一个典型的层状富锂(LiMnO)阴极中这些过程的动力学和热力学。我们确定了一种在本体中形成O分子的动力学上可及且热力学上有利的机制,该机制涉及Mn迁移并由层间氧二聚作用驱动。在充电末期,本体结构局部相分离成富含MnO的区域和贫Mn的纳米空隙,其中包含作为纳米受限流体的O分子。这些纳米空隙连接成一个渗流网络,可能允许长程氧传输,并将本体O的形成与表面O的损失联系起来。这些见解突出了制定策略以动力学方式稳定富锂O氧化还原阴极的本体结构以维持其高能量密度的重要性。