Suppr超能文献

富锂层状氧化物在适度脱锂时会出现大量的氧损失和化学膨胀。

Substantial oxygen loss and chemical expansion in lithium-rich layered oxides at moderate delithiation.

作者信息

Csernica Peter M, McColl Kit, Busse Grace M, Lim Kipil, Rivera Diego F, Shapiro David A, Islam M Saiful, Chueh William C

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Department of Chemistry, University of Bath, Bath, UK.

出版信息

Nat Mater. 2025 Jan;24(1):92-100. doi: 10.1038/s41563-024-02032-6. Epub 2024 Oct 17.

Abstract

Delithiation of layered oxide electrodes triggers irreversible oxygen loss, one of the primary degradation modes in lithium-ion batteries. However, the delithiation-dependent mechanisms of oxygen loss remain poorly understood. Here we investigate the oxygen non-stoichiometry in LiNiMnCoO electrodes as a function of Li content by using cycling protocols with long open-circuit voltage steps at varying states of charge. Surprisingly, we observe substantial oxygen loss even at moderate delithiation, corresponding to 2.5, 4.0 and 7.6 ml O per gram of LiNiMnCoO after resting at upper capacity cut-offs of 135, 200 and 265 mAh g for 100 h. Our observations suggest an intrinsic oxygen instability consistent with predictions of high oxygen activity at intermediate potentials versus Li/Li. In addition, we observe a large chemical expansion coefficient with respect to oxygen non-stoichiometry, which is about three times greater than those of classical oxygen-deficient materials such as fluorite and perovskite oxides. Our work challenges the conventional wisdom that deep delithiation is a necessary condition for oxygen loss in layered oxide electrodes and highlights the importance of calendar ageing for investigating oxygen stability.

摘要

层状氧化物电极的脱锂会引发不可逆的氧损失,这是锂离子电池主要的降解模式之一。然而,氧损失的脱锂相关机制仍知之甚少。在此,我们通过在不同充电状态下采用具有长开路电压步长的循环方案,研究了LiNiMnCoO电极中氧的非化学计量比随锂含量的变化。令人惊讶的是,我们观察到即使在适度脱锂情况下也会有大量的氧损失,在135、200和265 mAh g的上限截止容量下静置100小时后,每克LiNiMnCoO分别对应2.5、4.0和7.6 ml O的氧损失。我们的观察结果表明存在一种内在的氧不稳定性,这与相对于Li/Li在中间电位下高氧活性的预测一致。此外,我们观察到相对于氧非化学计量比有较大的化学膨胀系数,这比萤石和钙钛矿氧化物等经典缺氧材料的化学膨胀系数大约大三倍。我们的工作挑战了传统观念,即深度脱锂是层状氧化物电极中氧损失的必要条件,并突出了日历老化对于研究氧稳定性的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验