Suppr超能文献

常用的软件工具会产生相互冲突且过于乐观的 AUPRC 值。

Commonly used software tools produce conflicting and overly-optimistic AUPRC values.

机构信息

School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.

出版信息

Genome Biol. 2024 May 13;25(1):118. doi: 10.1186/s13059-024-03266-y.

Abstract

The precision-recall curve (PRC) and the area under the precision-recall curve (AUPRC) are useful for quantifying classification performance. They are commonly used in situations with imbalanced classes, such as cancer diagnosis and cell type annotation. We evaluate 10 popular tools for plotting PRC and computing AUPRC, which were collectively used in more than 3000 published studies. We find the AUPRC values computed by the tools rank classifiers differently and some tools produce overly-optimistic results.

摘要

精准召回曲线(PRC)和精准召回曲线下面积(AUPRC)可用于量化分类性能。它们常用于不平衡类情况,例如癌症诊断和细胞类型注释。我们评估了 10 种用于绘制 PRC 和计算 AUPRC 的流行工具,这些工具在 3000 多个已发表的研究中被共同使用。我们发现,这些工具计算的 AUPRC 值对分类器的排名不同,并且一些工具产生了过于乐观的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6b4/11089773/2a4ab717beae/13059_2024_3266_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验