Cesar Ramos de Jesus Hugo, Solis Nestor, Machado Yoan, Pablos Isabel, Bell Peter A, Kappelhoff Reinhild, Grin Peter M, Sorgi Carlos A, Butler Georgina S, Overall Christopher M
Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
J Virol. 2024 Jun 13;98(6):e0004924. doi: 10.1128/jvi.00049-24. Epub 2024 May 14.
SARS-CoV-2 3C-like main protease (3CL) is essential for protein excision from the viral polyprotein. 3CL inhibitor drug development to block SARS-CoV-2 replication focuses on the catalytic non-prime (P) side for specificity and potency, but the importance of the prime (P') side in substrate specificity and for drug development remains underappreciated. We determined the P6-P6' specificity for 3CL from >800 cleavage sites that we identified using Proteomic Identification of Cleavage site Specificity (PICS). Cleavage occurred after the canonical P1-Gln and non-canonical P1-His and P1-Met residues. Moreover, P3 showed a preference for Arg/Lys and P3' for His. Essential H-bonds between the N-terminal Ser1 of protomer-B in 3CL dimers form with P1-His, but not with P1-Met. Nonetheless, cleavage occurs at P1-Met456 in native MAP4K5. Elevated reactive oxygen species in SARS-CoV-2 infection oxidize methionines. Molecular simulations revealed P1-Met forms an H-bond with Ser1 and notably, strong positive cooperativity between P1-Met with P3'-His was revealed, which enhanced peptide-cleavage rates. The highly plastic S3' subsite accommodates P3'-His that displays stabilizing backbone H-bonds with Thr25 lying central in a "'threonine trio" (Thr24-Thr25-Thr26) in the P'-binding domain I. Molecular docking simulations unveiled structure-activity relationships impacting 3CL-substrate interactions, and the role of these structural determinants was confirmed by MALDI-TOF-MS cleavage assays of P1'- and P3'-positional scanning peptide libraries carrying a 2nd optimal cut-site as an internal positive control. These data informed the design of two new and highly soluble 3CLquenched-fluorescent peptide substrates for improved FRET monitoring of 3CL activity with 15× improved sensitivity over current assays.IMPORTANCEFrom global proteomics identification of >800 cleavage sites, we characterized the P6-P6' active site specificity of SARS-CoV-2 3CL using proteome-derived peptide library screens, molecular modeling simulations, and focussed positional peptide libraries. In P1', we show that alanine and serine are cleaved 3× faster than glycine and the hydrophobic small amino acids Leu, Ile, or Val prevent cleavage of otherwise optimal non-prime sequences. In characterizing non-canonical non-prime P1 specificity, we explored the unusual P1-Met specificity, discovering enhanced cleavage when in the oxidized state (P1-Met). We unveiled unexpected amino acid cooperativity at P1-Met with P3'-His and noncanonical P1-His with P2-Phe, and the importance of the threonine trio (Thr24-Thr25-Thr26) in the prime side binding domain I in defining prime side binding in SARS-CoV-2 3CL. From these analyses, we rationally designed quenched-fluorescence natural amino acid peptide substrates with >15× improved sensitivity and high peptide solubility, facilitating handling and application for screening of new antiviral drugs.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的3C样主要蛋白酶(3CL)对于从病毒多聚蛋白中切除蛋白质至关重要。开发用于阻断SARS-CoV-2复制的3CL抑制剂药物主要聚焦于催化非主(P)侧以确保特异性和效力,但主(P')侧在底物特异性和药物开发中的重要性仍未得到充分认识。我们通过蛋白质组学鉴定切割位点特异性(PICS)确定了来自800多个切割位点的3CL的P6 - P6'特异性。切割发生在典型的P1 - Gln以及非典型的P1 - His和P1 - Met残基之后。此外,P3偏好Arg/Lys,P3'偏好His。3CL二聚体中B原体的N端Ser1与P1 - His形成关键氢键,但不与P1 - Met形成。尽管如此,在天然的MAP4K5中P1 - Met456处仍会发生切割。SARS-CoV-2感染中活性氧升高会氧化甲硫氨酸。分子模拟显示P1 - Met与Ser1形成氢键,并且值得注意的是,揭示了P1 - Met与P3' - His之间有很强的正协同性,这提高了肽切割速率。高度可塑性的S3'亚位点容纳P3' - His,P3' - His与位于P'结合结构域I中心的“苏氨酸三联体”(Thr24 - Thr25 - Thr26)中的Thr25形成稳定的主链氢键。分子对接模拟揭示了影响3CL - 底物相互作用的构效关系,并且通过携带第二个最佳切割位点作为内部阳性对照的P1'和P3'位置扫描肽库的基质辅助激光解吸电离飞行时间质谱(MALDI - TOF-MS)切割分析证实了这些结构决定因素的作用。这些数据为设计两种新型且高度可溶的3CL淬灭荧光肽底物提供了依据,用于改进对3CL活性的荧光共振能量转移(FRET)监测,其灵敏度比当前检测方法提高了15倍。重要性通过对800多个切割位点的全蛋白质组学鉴定,我们利用蛋白质组衍生的肽库筛选、分子建模模拟和聚焦位置肽库,对SARS-CoV-2 3CL的P6 - P6'活性位点特异性进行了表征。在P1'中,我们表明丙氨酸和丝氨酸的切割速度比甘氨酸快3倍,并且疏水性小氨基酸亮氨酸、异亮氨酸或缬氨酸会阻止其他最优非主序列的切割。在表征非典型非主P1特异性时,我们探究了不寻常的P1 - Met特异性,发现其在氧化状态(P1 - Met)时切割增强。我们揭示了P1 - Met与P3' - His以及非典型P1 - His与P2 - Phe之间意外的氨基酸协同性,以及苏氨酸三联体(Thr24 - Thr25 - Thr26)在SARS-CoV-2 3CL的主侧结合结构域I中定义主侧结合的重要性。通过这些分析,我们合理设计了淬灭荧光天然氨基酸肽底物,其灵敏度提高了15倍以上且肽溶解性高,便于处理和应用于新型抗病毒药物的筛选。