Hou Zhiwen, Liu Jingrui, Yu Sijiu
Chongqing University-University of Cincinnati Joint Co-op Institute, Chongqing University, Chongqing, 400044, China.
Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
Sci Rep. 2025 Jun 5;15(1):19828. doi: 10.1038/s41598-025-02596-6.
Analog circuit fault diagnosis is crucial for ensuring the reliability and safety of electronic systems. To overcome the limitations of traditional methods, this study proposes a novel analog circuit fault diagnosis method based on Continuous Wavelet Transform (CWT) and Dual-Stream Convolutional Neural Network (DSCNN). The method uses CWT to convert raw fault waveform data into two-dimensional time-frequency images and employs a one-dimensional convolutional neural network (1D-CNN) to extract temporal features and a two-dimensional convolutional neural network (2D-CNN) to extract image features, achieving feature fusion. Additionally, the model incorporates a Convolutional Block Attention Module (CBAM), which includes channel and spatial attention modules, to enhance the model's expressive power. Experiments on the Sallen-Key band-pass filter circuit, four-op-amp biquad high-pass filter circuit, and Tow-Thomas filter circuit validate the effectiveness of the proposed method, demonstrating excellent fault classification accuracy. Their classification accuracies reached 1.0000 ± 0.0000, 99.66% ± 0.0016, and 0.9771 ± 0.0023, respectively. Under various SNR conditions, our proposed model consistently maintains the highest classification accuracy with minimal impact from SNR variations. Furthermore, detailed practical experiments on the four-op-amp biquad high-pass filter circuit show that this model outperforms 1DCNN, CWT-CNN, and ISSA-SVM by 3.85%, 5.50%, and 6.39%, respectively, further proving the model's superior feature extraction capability.
模拟电路故障诊断对于确保电子系统的可靠性和安全性至关重要。为了克服传统方法的局限性,本研究提出了一种基于连续小波变换(CWT)和双流卷积神经网络(DSCNN)的新型模拟电路故障诊断方法。该方法使用CWT将原始故障波形数据转换为二维时频图像,并采用一维卷积神经网络(1D-CNN)提取时间特征,二维卷积神经网络(2D-CNN)提取图像特征,实现特征融合。此外,该模型还集成了一个卷积块注意力模块(CBAM),其中包括通道和空间注意力模块,以增强模型的表达能力。在Sallen-Key带通滤波器电路、四运放双二阶高通滤波器电路和Tow-Thomas滤波器电路上进行的实验验证了该方法的有效性,展示了出色的故障分类准确率。它们的分类准确率分别达到了1.0000±0.0000、99.66%±0.0016和0.9771±0.0023。在各种信噪比条件下,我们提出的模型始终保持最高的分类准确率,信噪比变化的影响最小。此外,在四运放双二阶高通滤波器电路上进行的详细实际实验表明,该模型分别比1DCNN、CWT-CNN和ISSA-SVM性能高出3.85%、5.50%和6.39%,进一步证明了该模型卓越的特征提取能力。