Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America.
Electrical and Computer Engineering, Baskin School of Engineering, University of California, Santa Cruz, CA, United States of America.
PLoS One. 2024 May 14;19(5):e0298286. doi: 10.1371/journal.pone.0298286. eCollection 2024.
Precision medicine endeavors to personalize treatments, considering individual variations in patient responses based on factors like genetic mutations, age, and diet. Integrating this approach dynamically, bioelectronics equipped with real-time sensing and intelligent actuation present a promising avenue. Devices such as ion pumps hold potential for precise therapeutic drug delivery, a pivotal aspect of effective precision medicine. However, implementing bioelectronic devices in precision medicine encounters formidable challenges. Variability in device performance due to fabrication inconsistencies and operational limitations, including voltage saturation, presents significant hurdles. To address this, closed-loop control with adaptive capabilities and explicit handling of saturation becomes imperative. Our research introduces an enhanced sliding mode controller capable of managing saturation, adept at satisfactory control actions amidst model uncertainties. To evaluate the controller's effectiveness, we conducted in silico experiments using an extended mathematical model of the proton pump. Subsequently, we compared the performance of our developed controller with classical Proportional Integral Derivative (PID) and machine learning (ML)-based controllers. Furthermore, in vitro experiments assessed the controller's efficacy using various reference signals for controlled Fluoxetine delivery. These experiments showcased consistent performance across diverse input signals, maintaining the current value near the reference with a relative error of less than 7% in all trials. Our findings underscore the potential of the developed controller to address challenges in bioelectronic device implementation, offering reliable precision in drug delivery strategies within the realm of precision medicine.
精准医学致力于根据遗传突变、年龄和饮食等因素对患者反应的个体差异进行个性化治疗。配备实时感测和智能致动功能的生物电子学设备可以动态地整合这种方法,为精准医学提供了一个很有前景的途径。离子泵等设备在精确药物输送方面具有很大的潜力,这是有效精准医学的一个关键方面。然而,在精准医学中实施生物电子设备会遇到巨大的挑战。由于制造不一致和电压饱和等操作限制,设备性能的变化带来了很大的障碍。为了解决这个问题,具有自适应能力和明确处理饱和能力的闭环控制变得至关重要。我们的研究引入了一种增强型滑模控制器,能够管理饱和,在模型不确定性中能够进行令人满意的控制操作。为了评估控制器的有效性,我们使用质子泵的扩展数学模型进行了计算机模拟实验。随后,我们将我们开发的控制器与经典的比例积分微分(PID)和基于机器学习(ML)的控制器的性能进行了比较。此外,还通过使用各种参考信号进行体外实验来评估了控制器在控制氟西汀输送方面的功效。这些实验表明,该控制器在各种输入信号下都能保持一致的性能,在所有试验中,电流值相对于参考值的误差都小于 7%。我们的研究结果强调了所开发的控制器在解决生物电子设备实施中的挑战方面的潜力,为精准医学领域的药物输送策略提供了可靠的精度。