Suppr超能文献

自由飞行、回声定位的蝙蝠的超快速伦巴反应。

Superfast Lombard response in free-flying, echolocating bats.

机构信息

Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark.

Section for Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark.

出版信息

Curr Biol. 2024 Jun 3;34(11):2509-2516.e3. doi: 10.1016/j.cub.2024.04.048. Epub 2024 May 13.

Abstract

Acoustic cues are crucial to communication, navigation, and foraging in many animals, which hence face the problem of detecting and discriminating these cues in fluctuating noise levels from natural or anthropogenic sources. Such auditory dynamics are perhaps most extreme for echolocating bats that navigate and hunt prey on the wing in darkness by listening for weak echo returns from their powerful calls in complex, self-generated umwelts. Due to high absorption of ultrasound in air and fast flight speeds, bats operate with short prey detection ranges and dynamic sensory volumes, leading us to hypothesize that bats employ superfast vocal-motor adjustments to rapidly changing sensory scenes. To test this hypothesis, we investigated the onset and offset times and magnitude of the Lombard response in free-flying echolocating greater mouse-eared bats exposed to onsets of intense constant or duty-cycled masking noise during a landing task. We found that the bats invoked a bandwidth-dependent Lombard response of 0.1-0.2 dB per dB increase in noise, with very short delay and relapse times of 20 ms in response to onsets and termination of duty-cycled noise. In concert with the absence call time-locking to noise-free periods, these results show that free-flying bats exhibit a superfast, but hard-wired, vocal-motor response to increased noise levels. We posit that this reflex is mediated by simple closed-loop audio-motor feedback circuits that operate independently of wingbeat and respiration cycles to allow for rapid adjustments to the highly dynamic auditory scenes encountered by these small predators.

摘要

声学线索对许多动物的通讯、导航和觅食至关重要,因此它们面临着在来自自然或人为来源的波动噪声水平下检测和区分这些线索的问题。对于回声定位蝙蝠来说,这种听觉动态可能是最极端的,它们在黑暗中通过聆听来自强大叫声的微弱回声来在翅膀上导航和捕食猎物,在复杂的、自我产生的环境中。由于超声波在空气中的高吸收率和快速飞行速度,蝙蝠的猎物探测范围和动态感觉容积很短,这使我们假设蝙蝠采用超快的发声-运动调整来快速适应不断变化的感觉场景。为了验证这一假设,我们研究了自由飞行的回声定位大耳蝠在着陆任务中暴露于强持续或占空比掩蔽噪声起始时的起始和结束时间以及 Lombard 响应的幅度。我们发现,蝙蝠在噪声增加 1dB 时会产生 0.1-0.2dB 的带宽相关 Lombard 响应,对占空比噪声的起始和终止的延迟和恢复时间非常短,只有 20ms。与无噪声期的缺失叫声时间锁定相结合,这些结果表明,自由飞行的蝙蝠对噪声水平的增加表现出超快但硬连线的发声-运动反应。我们假设这种反射是由简单的闭环音频-运动反馈电路介导的,这些电路独立于翼拍和呼吸周期运行,允许对这些小型捕食者遇到的高度动态听觉场景进行快速调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验