Department of Thoracic Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
Department of Thoracic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
Respir Res. 2024 May 14;25(1):206. doi: 10.1186/s12931-024-02839-6.
Previous studies have largely neglected the role of sulfur metabolism in LUAD, and no study has combine iron, copper, and sulfur-metabolism associated genes together to create prognostic signatures.
This study encompasses 1564 LUAD patients, 1249 NSCLC patients, and over 10,000 patients with various cancer types from diverse cohorts. We employed the R package ConsensusClusterPlus to separate patients into different ICSM (Iron, Copper, and Sulfur-Metabolism) subtypes. Various machine-learning methods were utilized to develop the ICSMI. Enrichment analyses were conducted using ClusterProfiler and GSVA, while IOBR quantified immune cell infiltration. GISTIC2.0 and maftools were utilized for CNV and SNV data analysis. The Oncopredict package predicted drug information based on GDSC1. TIDE algorithm and cohorts GSE91061 and IMvigor210 evaluated patient response to immunotherapy. Single-cell data was processed using the Seurat package, AUCell package calculated cells geneset activity scores, and the Scissor algorithm identified ICSMI-associated cells. In vitro experiments was conducted to explore the role of ICSMRGs in LUAD.
Unsupervised clustering identified two distinct ICSM subtypes of LUAD, each with unique clinical characteristics. The ICSMI, comprising 10 genes, was constructed using integrated machine-learning methods. Its prognostic power was validated in 10 independent datasets, revealing that LUAD patients with higher ICSMI levels had poorer prognoses. Furthermore, ICSMI demonstrated superior predictive abilities compared to 102 previously published signatures. A nomogram incorporating ICSMI and clinical features exhibited high predictive performance. ICSMI positively correlated with patients gene mutations, and integrated analysis of bulk and single-cell transcriptome data revealed its association with TME modulators. Cells representing the high-ICSMI phenotype exhibited more malignant features. LUAD patients with high ICSMI levels exhibited sensitivity to chemotherapy and targeted therapy but displayed resistance to immunotherapy. In a comprehensive analysis across various cancers, ICSMI retained significant prognostic value and emerged as a risk factor for the majority of cancer patients.
ICSMI provides critical prognostic insights for LUAD patients, offering valuable insights into the tumor microenvironment and predicting treatment responsiveness.
先前的研究在很大程度上忽视了硫代谢在 LUAD 中的作用,并且没有研究将铁、铜和硫代谢相关基因结合在一起创建预后特征。
本研究包括 1564 名 LUAD 患者、1249 名 NSCLC 患者以及来自不同队列的 10000 多名各种癌症类型的患者。我们使用 R 包 ConsensusClusterPlus 将患者分为不同的 ICSM(铁、铜和硫代谢)亚型。使用各种机器学习方法来开发 ICSMI。使用 ClusterProfiler 和 GSVA 进行富集分析,而 IOBR 量化了免疫细胞浸润。GISTIC2.0 和 maftools 用于分析 CNV 和 SNV 数据。Oncopredict 包根据 GDSC1 预测药物信息。TIDE 算法和队列 GSE91061 和 IMvigor210 评估了患者对免疫治疗的反应。使用 Seurat 包处理单细胞数据,使用 AUCell 包计算细胞基因集活性评分,使用 Scissor 算法识别 ICSMI 相关细胞。进行了体外实验以探索 ICSMRGs 在 LUAD 中的作用。
无监督聚类确定了两种不同的 LUAD ICSM 亚型,每个亚型都具有独特的临床特征。使用集成机器学习方法构建了包含 10 个基因的 ICSMI。在 10 个独立数据集验证了其预后能力,结果表明 LUAD 患者中 ICSMI 水平较高的患者预后较差。此外,ICSMI 与 102 个先前发表的特征相比具有更好的预测能力。纳入 ICSMI 和临床特征的列线图表现出较高的预测性能。ICSMI 与患者基因突变呈正相关,对批量和单细胞转录组数据的综合分析表明其与 TME 调节剂有关。代表高 ICSMI 表型的细胞表现出更多恶性特征。LUAD 患者中 ICSMI 水平较高的患者对化疗和靶向治疗敏感,但对免疫治疗有耐药性。在对各种癌症的综合分析中,ICSMI 仍然具有显著的预后价值,并成为大多数癌症患者的危险因素。
ICSMI 为 LUAD 患者提供了关键的预后信息,为肿瘤微环境提供了有价值的见解,并预测了治疗反应性。