Suppr超能文献

基于微分同胚变换的腹部磁共振成像-计算机断层扫描可变形图像配准

Diffeomorphic Transformer-based Abdomen MRI-CT Deformable Image Registration.

作者信息

Lei Yang, Matkovic Luke A, Roper Justin, Wang Tonghe, Zhou Jun, Ghavidel Beth, McDonald Mark, Patel Pretesh, Yang Xiaofeng

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065.

出版信息

ArXiv. 2024 May 4:arXiv:2405.02692v1.

Abstract

BACKGROUND

Stereotactic body radiotherapy (SBRT) is a well-established treatment modality for liver metastases in patients unsuitable for surgery. Both CT and MRI are useful during treatment planning for accurate target delineation and to reduce potential organs-at-risk (OAR) toxicity from radiation. MRI-CT deformable image registration (DIR) is required to propagate the contours defined on high-contrast MRI to CT images. An accurate DIR method could lead to more precisely defined treatment volumes and superior OAR sparing on the treatment plan. Therefore, it is beneficial to develop an accurate MRI-CT DIR for liver SBRT.

PURPOSE

To create a new deep learning model that can estimate the deformation vector field (DVF) for directly registering abdominal MRI-CT images.

METHODS

The proposed method assumed a diffeomorphic deformation. By using topology-preserved deformation features extracted from the probabilistic diffeomorphic registration model, abdominal motion can be accurately obtained and utilized for DVF estimation. The model integrated Swin transformers, which have demonstrated superior performance in motion tracking, into the convolutional neural network (CNN) for deformation feature extraction. The model was optimized using a cross-modality image similarity loss and a surface matching loss. To compute the image loss, a modality-independent neighborhood descriptor (MIND) was used between the deformed MRI and CT images. The surface matching loss was determined by measuring the distance between the warped coordinates of the surfaces of contoured structures on the MRI and CT images. To evaluate the performance of the model, a retrospective study was carried out on a group of 50 liver cases that underwent rigid registration of MRI and CT scans. The deformed MRI image was assessed against the CT image using the target registration error (TRE), Dice similarity coefficient (DSC), and mean surface distance (MSD) between the deformed contours of the MRI image and manual contours of the CT image.

RESULTS

When compared to only rigid registration, DIR with the proposed method resulted in an increase of the mean DSC values of the liver and portal vein from 0.850±0.102 and 0.628±0.129 to 0.903±0.044 and 0.763±0.073, a decrease of the mean MSD of the liver from 7.216±4.513 mm to 3.232±1.483 mm, and a decrease of the TRE from 26.238±2.769 mm to 8.492±1.058 mm.

CONCLUSION

The proposed DIR method based on a diffeomorphic transformer provides an effective and efficient way to generate an accurate DVF from an MRI-CT image pair of the abdomen. It could be utilized in the current treatment planning workflow for liver SBRT.

摘要

背景

立体定向体部放疗(SBRT)是一种成熟的治疗方法,用于治疗不适于手术的肝转移患者。在治疗计划过程中,CT和MRI对于精确勾画靶区以及减少辐射对潜在危及器官(OAR)的毒性均很有用。需要采用MRI-CT可变形图像配准(DIR)将在高对比度MRI上定义的轮廓映射到CT图像上。一种准确的DIR方法可使治疗体积定义得更精确,并在治疗计划中更好地保护OAR。因此,开发一种用于肝脏SBRT的准确MRI-CT DIR是有益的。

目的

创建一种新的深度学习模型,该模型可估计用于直接配准腹部MRI-CT图像的变形矢量场(DVF)。

方法

所提出的方法假定为微分同胚变形。通过使用从概率微分同胚配准模型中提取的拓扑保留变形特征,可以准确获取腹部运动并将其用于DVF估计。该模型将在运动跟踪方面表现出卓越性能的Swin变压器集成到卷积神经网络(CNN)中,用于变形特征提取。该模型使用跨模态图像相似性损失和表面匹配损失进行优化。为了计算图像损失,在变形后的MRI和CT图像之间使用了模态无关邻域描述符(MIND)。表面匹配损失通过测量MRI和CT图像上轮廓结构表面的扭曲坐标之间的距离来确定。为了评估该模型的性能,对一组50例接受MRI和CT扫描刚性配准的肝脏病例进行了回顾性研究。使用目标配准误差(TRE)、骰子相似系数(DSC)以及MRI图像变形轮廓与CT图像手动轮廓之间的平均表面距离(MSD),将变形后的MRI图像与CT图像进行对比评估。

结果

与仅进行刚性配准相比,采用所提出方法的DIR使肝脏和门静脉的平均DSC值从0.850±0.102和0.628±0.129分别增加到0.903±0.044和0.763±0.073,肝脏的平均MSD从7.216±4.513 mm降至3.232±1.483 mm,TRE从26.238±2.769 mm降至8.492±1.058 mm。

结论

所提出的基于微分同胚变压器的DIR方法提供了一种有效且高效的方式,可从腹部的MRI-CT图像对生成准确的DVF。它可应用于当前肝脏SBRT的治疗计划工作流程中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验