Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322.
Phys Med Biol. 2020 Apr 20;65(8):085003. doi: 10.1088/1361-6560/ab79c4.
Deformable image registration (DIR) of 4D-CT images is important in multiple radiation therapy applications including motion tracking of soft tissue or fiducial markers, target definition, image fusion, dose accumulation and treatment response evaluations. It is very challenging to accurately and quickly register 4D-CT abdominal images due to its large appearance variances and bulky sizes. In this study, we proposed an accurate and fast multi-scale DIR network (MS-DIRNet) for abdominal 4D-CT registration. MS-DIRNet consists of a global network (GlobalNet) and local network (LocalNet). GlobalNet was trained using down-sampled whole image volumes while LocalNet was trained using sampled image patches. MS-DIRNet consists of a generator and a discriminator. The generator was trained to directly predict a deformation vector field (DVF) based on the moving and target images. The generator was implemented using convolutional neural networks with multiple attention gates. The discriminator was trained to differentiate the deformed images from the target images to provide additional DVF regularization. The loss function of MS-DIRNet includes three parts which are image similarity loss, adversarial loss and DVF regularization loss. The MS-DIRNet was trained in a completely unsupervised manner meaning that ground truth DVFs are not needed. Different from traditional DIRs that calculate DVF iteratively, MS-DIRNet is able to calculate the final DVF in a single forward prediction which could significantly expedite the DIR process. The MS-DIRNet was trained and tested on 25 patients' 4D-CT datasets using five-fold cross validation. For registration accuracy evaluation, target registration errors (TREs) of MS-DIRNet were compared to clinically used software. Our results showed that the MS-DIRNet with an average TRE of 1.2 ± 0.8 mm outperformed the commercial software with an average TRE of 2.5 ± 0.8 mm in 4D-CT abdominal DIR, demonstrating the superior performance of our method in fiducial marker tracking and overall soft tissue alignment.
4D-CT 图像的形变配准(DIR)在多种放射治疗应用中非常重要,包括软组织或基准标记物的运动跟踪、靶区定义、图像融合、剂量累积和治疗反应评估。由于腹部 4D-CT 图像的外观差异大且体积庞大,因此准确、快速地对其进行配准非常具有挑战性。在这项研究中,我们提出了一种用于腹部 4D-CT 配准的准确、快速的多尺度 DIR 网络(MS-DIRNet)。MS-DIRNet 由全局网络(GlobalNet)和局部网络(LocalNet)组成。全局网络使用下采样的全图像体积进行训练,而局部网络使用采样的图像补丁进行训练。MS-DIRNet 由生成器和鉴别器组成。生成器使用卷积神经网络和多个注意力门,直接基于移动图像和目标图像预测变形向量场(DVF)。鉴别器则被训练成区分变形图像和目标图像,以提供额外的 DVF 正则化。MS-DIRNet 的损失函数包括三个部分:图像相似性损失、对抗损失和 DVF 正则化损失。MS-DIRNet 是在完全无监督的方式下进行训练的,这意味着不需要地面真实的 DVF。与传统的迭代计算 DVF 的 DIR 不同,MS-DIRNet 能够在单次正向预测中计算最终的 DVF,这可以显著加快 DIR 过程。MS-DIRNet 使用五折交叉验证在 25 名患者的 4D-CT 数据集上进行训练和测试。为了评估配准准确性,将 MS-DIRNet 的靶区注册误差(TRE)与临床使用的软件进行了比较。结果表明,在 4D-CT 腹部 DIR 中,MS-DIRNet 的平均 TRE 为 1.2±0.8mm,优于商用软件的平均 TRE 为 2.5±0.8mm,这表明我们的方法在基准标记物跟踪和整体软组织配准方面具有更好的性能。