Hydroinformatics Department, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands; School of Geography and the Environment, University of Oxford, Oxford, UK.
Hydroinformatics Department, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands.
J Environ Manage. 2024 Jan 15;350:119585. doi: 10.1016/j.jenvman.2023.119585. Epub 2023 Nov 27.
Rainfall-runoff (RR) modelling is a challenging task in hydrology, especially at the regional scale. This work presents an approach to simultaneously predict daily streamflow in 86 catchments across the US using a sequential CNN-LSTM deep learning architecture. The model effectively incorporates both spatial and temporal information, leveraging the CNN to encode spatial patterns and the LSTM to learn their temporal relations. For training, a year-long spatially distributed input with precipitation, maximum temperature, and minimum temperature for each day was used to predict one-day streamflow. The trained CNN-LSTM model was further fine-tuned for three local sub-clusters of the 86 stations, assessing the significance of fine-tuning in model performance. The CNN-LSTM model, post fine-tuning, exhibited strong predictive capabilities with a median Nash-Sutcliffe efficiency (NSE) of 0.62 over the test period. Remarkably, 65% of the 86 stations achieved NSE values greater than 0.6. The performance of the model was also compared to different deep learning models trained using a similar setup (CNN, LSTM, ANN). An LSTM model was also developed and trained individually to predict for each of the stations using local data. The CNN-LSTM model outperformed all the models which was trained regionally, and achieved a comparable performance to the local LSTM model. Fine-tuning improved the performance of all models during the test period. The results highlight the potential of the CNN-LSTM approach for regional RR modelling by effectively capturing complex spatiotemporal patterns inherent in the RR process.
降雨径流(RR)建模是水文学中的一项具有挑战性的任务,特别是在区域尺度上。本工作提出了一种使用顺序卷积神经网络-长短期记忆(CNN-LSTM)深度学习架构同时预测美国 86 个流域日流量的方法。该模型有效地结合了空间和时间信息,利用 CNN 编码空间模式,利用 LSTM 学习其时间关系。在训练过程中,使用具有每天降水、最高温和最低温的长达一年的空间分布式输入来预测一天的流量。经过训练的 CNN-LSTM 模型进一步针对 86 个站中的三个本地子集群进行了微调,评估了微调对模型性能的重要性。经过微调的 CNN-LSTM 模型在测试期间表现出很强的预测能力,中位数纳什-苏特克里夫效率(NSE)为 0.62。值得注意的是,86 个站中有 65%的站的 NSE 值大于 0.6。还将模型的性能与使用类似设置(CNN、LSTM、ANN)训练的不同深度学习模型进行了比较。还开发并训练了一个单独的 LSTM 模型,使用本地数据为每个站进行预测。CNN-LSTM 模型在区域 RR 建模方面表现优于所有经过区域训练的模型,并与本地 LSTM 模型具有相当的性能。微调在测试期间提高了所有模型的性能。结果突出了 CNN-LSTM 方法在区域 RR 建模中的潜力,因为它可以有效地捕捉 RR 过程中固有的复杂时空模式。