Suppr超能文献

时空卷积长短期记忆模型在区域流域流量预测中的应用。

Spatiotemporal convolutional long short-term memory for regional streamflow predictions.

机构信息

Hydroinformatics Department, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands; School of Geography and the Environment, University of Oxford, Oxford, UK.

Hydroinformatics Department, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, Netherlands.

出版信息

J Environ Manage. 2024 Jan 15;350:119585. doi: 10.1016/j.jenvman.2023.119585. Epub 2023 Nov 27.

Abstract

Rainfall-runoff (RR) modelling is a challenging task in hydrology, especially at the regional scale. This work presents an approach to simultaneously predict daily streamflow in 86 catchments across the US using a sequential CNN-LSTM deep learning architecture. The model effectively incorporates both spatial and temporal information, leveraging the CNN to encode spatial patterns and the LSTM to learn their temporal relations. For training, a year-long spatially distributed input with precipitation, maximum temperature, and minimum temperature for each day was used to predict one-day streamflow. The trained CNN-LSTM model was further fine-tuned for three local sub-clusters of the 86 stations, assessing the significance of fine-tuning in model performance. The CNN-LSTM model, post fine-tuning, exhibited strong predictive capabilities with a median Nash-Sutcliffe efficiency (NSE) of 0.62 over the test period. Remarkably, 65% of the 86 stations achieved NSE values greater than 0.6. The performance of the model was also compared to different deep learning models trained using a similar setup (CNN, LSTM, ANN). An LSTM model was also developed and trained individually to predict for each of the stations using local data. The CNN-LSTM model outperformed all the models which was trained regionally, and achieved a comparable performance to the local LSTM model. Fine-tuning improved the performance of all models during the test period. The results highlight the potential of the CNN-LSTM approach for regional RR modelling by effectively capturing complex spatiotemporal patterns inherent in the RR process.

摘要

降雨径流(RR)建模是水文学中的一项具有挑战性的任务,特别是在区域尺度上。本工作提出了一种使用顺序卷积神经网络-长短期记忆(CNN-LSTM)深度学习架构同时预测美国 86 个流域日流量的方法。该模型有效地结合了空间和时间信息,利用 CNN 编码空间模式,利用 LSTM 学习其时间关系。在训练过程中,使用具有每天降水、最高温和最低温的长达一年的空间分布式输入来预测一天的流量。经过训练的 CNN-LSTM 模型进一步针对 86 个站中的三个本地子集群进行了微调,评估了微调对模型性能的重要性。经过微调的 CNN-LSTM 模型在测试期间表现出很强的预测能力,中位数纳什-苏特克里夫效率(NSE)为 0.62。值得注意的是,86 个站中有 65%的站的 NSE 值大于 0.6。还将模型的性能与使用类似设置(CNN、LSTM、ANN)训练的不同深度学习模型进行了比较。还开发并训练了一个单独的 LSTM 模型,使用本地数据为每个站进行预测。CNN-LSTM 模型在区域 RR 建模方面表现优于所有经过区域训练的模型,并与本地 LSTM 模型具有相当的性能。微调在测试期间提高了所有模型的性能。结果突出了 CNN-LSTM 方法在区域 RR 建模中的潜力,因为它可以有效地捕捉 RR 过程中固有的复杂时空模式。

相似文献

1
Spatiotemporal convolutional long short-term memory for regional streamflow predictions.
J Environ Manage. 2024 Jan 15;350:119585. doi: 10.1016/j.jenvman.2023.119585. Epub 2023 Nov 27.
4
A spatiotemporal CNN-LSTM deep learning model for predicting soil temperature in diverse large-scale regional climates.
Sci Total Environ. 2025 Mar 10;968:178901. doi: 10.1016/j.scitotenv.2025.178901. Epub 2025 Feb 22.
5
Prediction of PM concentration based on a CNN-LSTM neural network algorithm.
PeerJ. 2024 Aug 6;12:e17811. doi: 10.7717/peerj.17811. eCollection 2024.
7
Enhancing hydrological modeling with transformers: a case study for 24-h streamflow prediction.
Water Sci Technol. 2024 May;89(9):2326-2341. doi: 10.2166/wst.2024.110. Epub 2024 Apr 4.
8
Reconstruction of missing spring discharge by using deep learning models with ensemble empirical mode decomposition of precipitation.
Environ Sci Pollut Res Int. 2022 Nov;29(54):82451-82466. doi: 10.1007/s11356-022-21597-w. Epub 2022 Jun 25.
10
Detection of the separated root canal instrument on panoramic radiograph: a comparison of LSTM and CNN deep learning methods.
Dentomaxillofac Radiol. 2023 Feb;52(3):20220209. doi: 10.1259/dmfr.20220209. Epub 2023 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验