Suppr超能文献

利用医学成像技术研究数据异质性对联邦学习算法性能的影响。

Investigating the impact of data heterogeneity on the performance of federated learning algorithm using medical imaging.

机构信息

Robotics and Internet of Things Lab, Prince Sultan University, Riyadh, Saudi Arabia.

College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia.

出版信息

PLoS One. 2024 May 15;19(5):e0302539. doi: 10.1371/journal.pone.0302539. eCollection 2024.

Abstract

In recent years, Federated Learning (FL) has gained traction as a privacy-centric approach in medical imaging. This study explores the challenges posed by data heterogeneity on FL algorithms, using the COVIDx CXR-3 dataset as a case study. We contrast the performance of the Federated Averaging (FedAvg) algorithm on non-identically and independently distributed (non-IID) data against identically and independently distributed (IID) data. Our findings reveal a notable performance decline with increased data heterogeneity, emphasizing the need for innovative strategies to enhance FL in diverse environments. This research contributes to the practical implementation of FL, extending beyond theoretical concepts and addressing the nuances in medical imaging applications. This research uncovers the inherent challenges in FL due to data diversity. It sets the stage for future advancements in FL strategies to effectively manage data heterogeneity, especially in sensitive fields like healthcare.

摘要

近年来,联邦学习(FL)作为一种以隐私为中心的医学成像方法受到关注。本研究以 COVIDx CXR-3 数据集为例,探讨了数据异质性对 FL 算法带来的挑战。我们对比了联邦平均(FedAvg)算法在非独立同分布(non-IID)和独立同分布(IID)数据上的性能。研究结果表明,随着数据异质性的增加,性能显著下降,这强调了需要创新策略来增强不同环境下的 FL。本研究为 FL 的实际应用做出了贡献,不仅限于理论概念,还涉及到医学成像应用中的细微差别。这项研究揭示了 FL 由于数据多样性而带来的固有挑战。它为未来的 FL 策略的发展奠定了基础,以有效地管理数据异质性,特别是在医疗保健等敏感领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b95f/11095741/e3ceb4f08b57/pone.0302539.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验