Suppr超能文献

关于COVID-19检测的联邦学习综合综述。

A comprehensive review of federated learning for COVID-19 detection.

作者信息

Naz Sadaf, Phan Khoa T, Chen Yi-Ping Phoebe

机构信息

Department of Computer Science and Information Technology, School of Engineering and Mathematical Sciences La Trobe University Bundoora Victoria Australia.

出版信息

Int J Intell Syst. 2022 Mar;37(3):2371-2392. doi: 10.1002/int.22777. Epub 2021 Dec 6.

Abstract

The coronavirus of 2019 (COVID-19) was declared a global pandemic by World Health Organization in March 2020. Effective testing is crucial to slow the spread of the pandemic. Artificial intelligence and machine learning techniques can help COVID-19 detection using various clinical symptom data. While deep learning (DL) approach requiring centralized data is susceptible to a high risk of data privacy breaches, federated learning (FL) approach resting on decentralized data can preserve data privacy, a critical factor in the health domain. This paper reviews recent advances in applying DL and FL techniques for COVID-19 detection with a focus on the latter. A model FL implementation use case in health systems with a COVID-19 detection using chest X-ray image data sets is studied. We have also reviewed applications of previously published FL experiments for COVID-19 research to demonstrate the applicability of FL in tackling health research issues. Last, several challenges in FL implementation in the healthcare domain are discussed in terms of potential future work.

摘要

2019年冠状病毒病(COVID-19)于2020年3月被世界卫生组织宣布为全球大流行病。有效的检测对于减缓疫情传播至关重要。人工智能和机器学习技术可利用各种临床症状数据帮助检测COVID-19。虽然需要集中数据的深度学习(DL)方法容易出现数据隐私泄露的高风险,但基于分散数据的联邦学习(FL)方法可以保护数据隐私,这是健康领域的一个关键因素。本文回顾了应用DL和FL技术进行COVID-19检测的最新进展,重点是后者。研究了在卫生系统中使用胸部X光图像数据集进行COVID-19检测的模型FL实施用例。我们还回顾了先前发表的用于COVID-19研究的FL实验的应用,以证明FL在解决健康研究问题方面的适用性。最后,从潜在的未来工作角度讨论了FL在医疗保健领域实施中的几个挑战。

相似文献

1
A comprehensive review of federated learning for COVID-19 detection.关于COVID-19检测的联邦学习综合综述。
Int J Intell Syst. 2022 Mar;37(3):2371-2392. doi: 10.1002/int.22777. Epub 2021 Dec 6.
3
Federated Learning in Glaucoma: A Comprehensive Review and Future Perspectives.青光眼领域的联邦学习:全面综述与未来展望
Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):92-105. doi: 10.1016/j.ogla.2024.08.004. Epub 2024 Aug 29.

本文引用的文献

1
Privacy-preserving Federated Brain Tumour Segmentation.隐私保护的联邦脑肿瘤分割
Mach Learn Med Imaging. 2019;11861:133-141. doi: 10.1007/978-3-030-32692-0_16. Epub 2019 Oct 10.
3
Detection of Respiratory Infections Using RGB-Infrared Sensors on Portable Device.使用便携式设备上的RGB红外传感器检测呼吸道感染
IEEE Sens J. 2020 Jun 24;20(22):13674-13681. doi: 10.1109/JSEN.2020.3004568. eCollection 2020 Nov 15.
5
Dynamic-Fusion-Based Federated Learning for COVID-19 Detection.基于动态融合的用于新冠病毒检测的联邦学习
IEEE Internet Things J. 2021 Feb 4;8(21):15884-15891. doi: 10.1109/JIOT.2021.3056185. eCollection 2021 Nov 1.
8
Federated Learning for Healthcare Informatics.医疗信息学中的联邦学习
J Healthc Inform Res. 2021;5(1):1-19. doi: 10.1007/s41666-020-00082-4. Epub 2020 Nov 12.
10
The future of digital health with federated learning.联合学习助力数字健康的未来。
NPJ Digit Med. 2020 Sep 14;3:119. doi: 10.1038/s41746-020-00323-1. eCollection 2020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验