Suppr超能文献

基于对抗自编码器和动态批量处理的深度学习框架,用于对 scRNA-seq 数据进行去噪和排序。

A deep learning framework for denoising and ordering scRNA-seq data using adversarial autoencoder with dynamic batching.

机构信息

Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, MD, USA.

Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, MD, USA.

出版信息

STAR Protoc. 2024 Jun 21;5(2):103067. doi: 10.1016/j.xpro.2024.103067. Epub 2024 May 14.

Abstract

Single-cell RNA sequencing (scRNA-seq) provides high resolution of cell-to-cell variation in gene expression and offers insights into cell heterogeneity, differentiating dynamics, and disease mechanisms. However, technical challenges such as low capture rates and dropout events can introduce noise in data analysis. Here, we present a deep learning framework, called the dynamic batching adversarial autoencoder (DB-AAE), for denoising scRNA-seq datasets. First, we describe steps to set up the computing environment, training, and tuning. Then, we depict the visualization of the denoising results. For complete details on the use and execution of this protocol, please refer to Ko et al..

摘要

单细胞 RNA 测序 (scRNA-seq) 提供了基因表达的细胞间变异性的高分辨率,并深入了解细胞异质性、分化动力学和疾病机制。然而,低捕获率和数据丢失事件等技术挑战会给数据分析引入噪声。在这里,我们提出了一个称为动态批处理对抗自动编码器 (DB-AAE) 的深度学习框架,用于对 scRNA-seq 数据集进行去噪。首先,我们描述了设置计算环境、训练和调整的步骤。然后,我们描绘了去噪结果的可视化。有关本协议使用和执行的完整详细信息,请参考 Ko 等人的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4030/11109296/fe76195621aa/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验