Suppr超能文献

基于对抗自编码器和动态批量处理的深度学习框架,用于对 scRNA-seq 数据进行去噪和排序。

A deep learning framework for denoising and ordering scRNA-seq data using adversarial autoencoder with dynamic batching.

机构信息

Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, MD, USA.

Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, MD, USA.

出版信息

STAR Protoc. 2024 Jun 21;5(2):103067. doi: 10.1016/j.xpro.2024.103067. Epub 2024 May 14.

Abstract

Single-cell RNA sequencing (scRNA-seq) provides high resolution of cell-to-cell variation in gene expression and offers insights into cell heterogeneity, differentiating dynamics, and disease mechanisms. However, technical challenges such as low capture rates and dropout events can introduce noise in data analysis. Here, we present a deep learning framework, called the dynamic batching adversarial autoencoder (DB-AAE), for denoising scRNA-seq datasets. First, we describe steps to set up the computing environment, training, and tuning. Then, we depict the visualization of the denoising results. For complete details on the use and execution of this protocol, please refer to Ko et al..

摘要

单细胞 RNA 测序 (scRNA-seq) 提供了基因表达的细胞间变异性的高分辨率,并深入了解细胞异质性、分化动力学和疾病机制。然而,低捕获率和数据丢失事件等技术挑战会给数据分析引入噪声。在这里,我们提出了一个称为动态批处理对抗自动编码器 (DB-AAE) 的深度学习框架,用于对 scRNA-seq 数据集进行去噪。首先,我们描述了设置计算环境、训练和调整的步骤。然后,我们描绘了去噪结果的可视化。有关本协议使用和执行的完整详细信息,请参考 Ko 等人的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4030/11109296/fe76195621aa/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验