School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH, UK.
Department of Chemistry and Institute for Life Sciences, University of Southampton, Highfield Campus, University Road, Southampton, SO17 1BJ, UK.
Sci Rep. 2024 May 15;14(1):11121. doi: 10.1038/s41598-024-61772-2.
The chemical and isotopic composition of stony coral skeletons form an important archive of past climate. However, these reconstructions are largely based on empirical relationships often complicated by "vital effects" arising from uncertain physiological processes of the coral holobiont. The skeletons of deep-sea corals, such as Desmophyllum dianthus, are characterised by micron-scale or larger geochemical heterogeneity associated with: (1) centres of calcification (COCs) where nucleation of new skeleton begins, and (2) fibres that thicken the skeleton. These features are difficult to sample cleanly using traditional techniques, resulting in uncertainty surrounding both the causes of geochemical differences and their influence on environmental signals. Here we combine optical, and in-situ chemical and isotopic, imaging tools across a range of spatial resolutions (~ 100 nm to 10 s of μm) in a correlative multimodal imaging (CMI) approach to isolate the microstructural geochemistry of each component. This reveals COCs are characterised by higher organic content, Mg, Li and Sr and lower U, B and δB compared to fibres, reflecting the contrasting biomineralisation mechanisms employed to construct each feature. CMI is rarely applied in Environmental/Earth Sciences, but here we illustrate the power of this approach to unpick the "vital effects" in D. dianthus, and by extension, other scleractinian corals.
造礁石珊瑚骨骼的化学成分和同位素组成构成了过去气候的重要档案。然而,这些重建在很大程度上基于经验关系,这些关系常常因珊瑚共生体不确定的生理过程所产生的“生命效应”而变得复杂。深海珊瑚(如 Diplotropia dianthus)的骨骼具有微米级或更大的地球化学不均匀性,与以下两个方面有关:(1)钙化中心(COC),新骨骼开始成核的地方,和(2)使骨骼变厚的纤维。这些特征很难用传统技术进行清洁采样,导致对地球化学差异的原因及其对环境信号的影响都存在不确定性。在这里,我们结合了一系列空间分辨率(~100nm 到 10μm 不等)的光学、原位化学和同位素成像工具,采用相关的多模态成像(CMI)方法来分离每个成分的微观结构地球化学。这表明 COC 的特征是有机含量、Mg、Li 和 Sr 较高,而 U、B 和 δB 较低,与纤维相比,这反映了构建每个特征所采用的对比生物矿化机制。CMI 在环境/地球科学中很少应用,但在这里我们说明了这种方法在揭示 D. dianthus 中“生命效应”的威力,以及在其他石珊瑚中的应用。