Van Andel Institute, Grand Rapids, MI, USA.
Zoetis, Kalamazoo, MI, USA.
Nature. 2024 Jun;630(8016):509-515. doi: 10.1038/s41586-024-07436-7. Epub 2024 May 15.
Temperature profoundly affects macromolecular function, particularly in proteins with temperature sensitivity. However, its impact is often overlooked in biophysical studies that are typically performed at non-physiological temperatures, potentially leading to inaccurate mechanistic and pharmacological insights. Here we demonstrate temperature-dependent changes in the structure and function of TRPM4, a temperature-sensitive Ca-activated ion channel. By studying TRPM4 prepared at physiological temperature using single-particle cryo-electron microscopy, we identified a 'warm' conformation that is distinct from those observed at lower temperatures. This conformation is driven by a temperature-dependent Ca-binding site in the intracellular domain, and is essential for TRPM4 function in physiological contexts. We demonstrated that ligands, exemplified by decavanadate (a positive modulator) and ATP (an inhibitor), bind to different locations of TRPM4 at physiological temperatures than at lower temperatures, and that these sites have bona fide functional relevance. We elucidated the TRPM4 gating mechanism by capturing structural snapshots of its different functional states at physiological temperatures, revealing the channel opening that is not observed at lower temperatures. Our study provides an example of temperature-dependent ligand recognition and modulation of an ion channel, underscoring the importance of studying macromolecules at physiological temperatures. It also provides a potential molecular framework for deciphering how thermosensitive TRPM channels perceive temperature changes.
温度深刻地影响着生物大分子的功能,尤其是对温度敏感的蛋白质。然而,在通常于非生理温度下进行的生物物理研究中,这一影响往往被忽视,这可能导致对机械和药理学见解的不准确。在这里,我们展示了温度依赖性变化对 TRPM4 的结构和功能的影响,TRPM4 是一种温度敏感的 Ca 激活离子通道。通过使用单颗粒冷冻电子显微镜研究在生理温度下制备的 TRPM4,我们确定了一种“温暖”构象,与在较低温度下观察到的构象明显不同。这种构象是由细胞内域中温度依赖性的 Ca 结合位点驱动的,对于 TRPM4 在生理环境中的功能至关重要。我们证明,配体,如十钒酸盐(一种正调节剂)和 ATP(一种抑制剂),在生理温度下与 TRPM4 的不同结合部位结合,而不是在较低温度下结合,并且这些部位具有真正的功能相关性。我们通过在生理温度下捕获其不同功能状态的结构快照来阐明 TRPM4 的门控机制,揭示了在较低温度下观察不到的通道开放。我们的研究提供了一个温度依赖性配体识别和离子通道调节的范例,强调了在生理温度下研究生物大分子的重要性。它还为解析热敏 TRPM 通道如何感知温度变化提供了一个潜在的分子框架。