Suppr超能文献

非阻塞性冠状动脉心肌梗死患者发生主要不良心血管事件的免疫炎症生物标志物。

Immune-inflammatory biomarkers for the occurrence of MACE in patients with myocardial infarction with non-obstructive coronary arteries.

作者信息

Zhou Hongya, Li Xicong, Wang Wenyuan, Zha Yuanyi, Gao Guanli, Li Silin, Liu Bei, Guo Ruiwei

机构信息

Department of Cardiology, Kunming Medical University, The 920th Hospital, Kunming, Yunnan, China.

Department of Cardiology, 920th Hospital of Joint Logistics Support Force, People's Liberation Army of China (PLA), Kunming, Yunnan, China.

出版信息

Front Cardiovasc Med. 2024 May 1;11:1367919. doi: 10.3389/fcvm.2024.1367919. eCollection 2024.

Abstract

BACKGROUND

Neutrophil-to-high-density lipoprotein cholesterol ratio (NHR), monocyte-to-high-density lipoprotein cholesterol ratio (MHR), lymphocyte-to-high-density lipoprotein cholesterol ratio (LHR), platelet-to-high-density lipoprotein cholesterol ratio (PHR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), and aggregate index of systemic inflammation (AISI) have been identified as immune-inflammatory biomarkers associated with the prognosis of cardiovascular diseases. However, the relationship of these biomarkers with the prognosis of myocardial infarction with non-obstructive coronary arteries (MINOCA) remains unclear.

METHOD

Patients with MINOCA who underwent coronary angiography at the 920th Hospital of Joint Logistics Support Force were included in our study. Clinical baseline characteristics and laboratory testing data were collected from the hospital record system. The patients were divided into two groups on the basis of major adverse cardiovascular events (MACE) occurrence. Multiple logistic regression analysis was conducted to assess the relationship between NHR, MHR, LHR, PHR, SII, SIRI, AISI, and MACE. Receiver operating characteristic (ROC) curves were generated to evaluate the predictive value of NHR, MHR, LHR, PHR, SII, SIRI, and AISI for MACE in patients with MINOCA. The accuracy of the prediction was indicated by the area under the curve (AUC) value.

RESULTS

The study included 335 patients with MINOCA. (81 in the MACE group and 254 in the No-MACE group). The MACE group had higher levels of NHR, MHR, LHR, PHR, SII, SIRI, and AISI than the No-MACE group. Multiple logistic regression analysis adjusted for confounding factors indicated that the higher levels of NHR, MHR, PHR, SII, SIRI, and AISI were associated with the occurrence of MACE in patients with MINOCA ( < 0.001). The AUC values for NHR, MHR, PHR, SII, SIRI, and AISI were 0.695, 0.747, 0.674, 0.673, 0.688, and 0.676, respectively. The combination of NHR, MHR, PHR, SII, SIRI, and AISI improved the accuracy of predicting MACE in patients with MINOCA (AUC = 0.804).

CONCLUSION

Higher levels of NHR, MHR, PHR, SII, SIRI, and AISI were associated with the occurrence of MACE, and the combination of NHR, MHR, PHR, SII, SIRI, and AISI improved the accuracy for predicting the incidence of MACE events in patients with MINOCA.

摘要

背景

中性粒细胞与高密度脂蛋白胆固醇比值(NHR)、单核细胞与高密度脂蛋白胆固醇比值(MHR)、淋巴细胞与高密度脂蛋白胆固醇比值(LHR)、血小板与高密度脂蛋白胆固醇比值(PHR)、全身免疫炎症指数(SII)、全身炎症反应指数(SIRI)和全身炎症聚集指数(AISI)已被确定为与心血管疾病预后相关的免疫炎症生物标志物。然而,这些生物标志物与非阻塞性冠状动脉心肌梗死(MINOCA)预后的关系仍不清楚。

方法

在联勤保障部队第920医院接受冠状动脉造影的MINOCA患者纳入本研究。从医院记录系统收集临床基线特征和实验室检测数据。根据主要不良心血管事件(MACE)的发生情况将患者分为两组。进行多因素logistic回归分析,以评估NHR、MHR、LHR、PHR、SII、SIRI、AISI与MACE之间的关系。绘制受试者工作特征(ROC)曲线,以评估NHR、MHR、LHR、PHR、SII、SIRI和AISI对MINOCA患者MACE的预测价值。预测准确性用曲线下面积(AUC)值表示。

结果

本研究纳入335例MINOCA患者。(MACE组81例,无MACE组254例)。MACE组的NHR、MHR、LHR、PHR、SII、SIRI和AISI水平高于无MACE组。校正混杂因素后的多因素logistic回归分析表明,NHR、MHR、PHR、SII、SIRI和AISI水平较高与MINOCA患者发生MACE相关(<0.001)。NHR、MHR、PHR、SII、SIRI和AISI的AUC值分别为0.695、0.747、0.674、0.673、0.688和0.676。NHR、MHR、PHR、SII、SIRI和AISI联合使用可提高MINOCA患者MACE预测的准确性(AUC=0.804)。

结论

较高水平的NHR、MHR、PHR、SII、SIRI和AISI与MACE的发生相关,NHR、MHR、PHR、SII、SIRI和AISI联合使用可提高MINOCA患者MACE事件发生率的预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c00/11094260/f1983c2cc111/fcvm-11-1367919-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验