Department of Mathematics and Statistics, McGill University, Montreal, Québec, Canada.
Hum Brain Mapp. 1997;5(4):254-8. doi: 10.1002/(SICI)1097-0193(1997)5:4<254::AID-HBM9>3.0.CO;2-2.
The first part of this paper gives an overview of a simplified approach to the statistical analysis of PET and fMRI data, including new developments and future directions. The second part outlines a new method, based on multivariate linear models (MLM), for characterising the response in PET and fMRI data, which overcomes some of the drawbacks of current methods such as SSM, SVD, PLS and CVA.
本文第一部分概述了一种简化的 PET 和 fMRI 数据统计分析方法,包括新的发展和未来方向。第二部分概述了一种新的方法,该方法基于多元线性模型(MLM),用于描述 PET 和 fMRI 数据中的响应,该方法克服了当前 SSM、SVD、PLS 和 CVA 等方法的一些缺点。