文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

FexMoyS-PEG 纳米粒子在结直肠癌中的治疗潜力:通过 ROS-铁死亡-糖酵解调控的多模态方法。

Therapeutic potentials of FexMoyS-PEG nanoparticles in colorectal cancer: a multimodal approach via ROS-ferroptosis-glycolysis regulation.

机构信息

Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, PR China.

Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing, 100044, PR China.

出版信息

J Nanobiotechnology. 2024 May 16;22(1):253. doi: 10.1186/s12951-024-02515-3.


DOI:10.1186/s12951-024-02515-3
PMID:38755600
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11097533/
Abstract

Improving cancer therapy by targeting the adverse tumor microenvironment (TME) rather than the cancer cells presents a novel and potentially effective strategy. In this study, we introduced FeMoS nanoparticles (NPs), which act as sequential bioreactors to manipulate the TME. FeMoS NPs were synthesized using thermal decomposition and modified with polyethylene glycol (PEG). Their morphology, chemical composition, and photothermal properties were characterized. The capability to produce ROS and deplete GSH was evaluated. Effects on CRC cells, including cell viability, apoptosis, and glycolysis, were tested through various in vitro assays. In vivo efficacy was determined using CRC-bearing mouse models and patient-derived xenograft (PDX) models. The impact on the MAPK signaling pathway and tumor metabolism was also examined. The FeMoS NPs showed efficient catalytic activity, leading to increased ROS production and GSH depletion, inducing ferroptosis, and suppressing glycolysis in CRC cells. In vivo, the NPs significantly inhibited tumor growth, particularly when combined with NIR light therapy, indicating a synergistic effect of photothermal therapy and chemodynamic therapy. Biosafety assessments revealed no significant toxicity in treated mice. RNA sequencing suggested that the NPs impact metabolism and potentially immune processes within CRC cells. FeMoS NPs present a promising multifaceted approach for CRC treatment, effectively targeting tumor cells while maintaining biosafety. The nanoparticles exhibit potential for clinical translation, offering a new avenue for cancer therapy.

摘要

通过靶向肿瘤微环境(TME)而不是癌细胞来改善癌症治疗,提出了一种新颖且有潜在疗效的策略。在本研究中,我们引入了 FeMoS 纳米颗粒(NPs),它们作为连续生物反应器来操纵 TME。通过热分解法合成了 FeMoS NPs,并对其进行了聚乙二醇(PEG)修饰。对其形态、化学成分和光热性能进行了表征。评估了其产生 ROS 和耗竭 GSH 的能力。通过各种体外实验测试了它们对 CRC 细胞的影响,包括细胞活力、细胞凋亡和糖酵解。使用 CRC 荷瘤小鼠模型和患者来源的异种移植(PDX)模型评估了体内疗效。还研究了其对 MAPK 信号通路和肿瘤代谢的影响。FeMoS NPs 表现出高效的催化活性,导致 ROS 生成增加和 GSH 耗竭,诱导铁死亡,并抑制 CRC 细胞中的糖酵解。在体内,NPs 显著抑制肿瘤生长,尤其是与近红外光疗联合使用时,表明光热疗法和化学动力学疗法具有协同作用。生物安全性评估显示,治疗小鼠没有明显的毒性。RNA 测序表明,NPs 影响 CRC 细胞内的代谢和潜在的免疫过程。FeMoS NPs 为 CRC 治疗提供了一种有前途的多方面方法,能够有效靶向肿瘤细胞,同时保持生物安全性。这些纳米颗粒具有临床转化的潜力,为癌症治疗提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/9d5d080d1e3f/12951_2024_2515_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/f4daa066ac4b/12951_2024_2515_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/bdf6cf3b1a18/12951_2024_2515_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/47004465f4ce/12951_2024_2515_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/becd034e7380/12951_2024_2515_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/b0b1d59a2c0b/12951_2024_2515_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/0170665d8afb/12951_2024_2515_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/da8c4b578819/12951_2024_2515_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/b073acd869f5/12951_2024_2515_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/bee611191e0c/12951_2024_2515_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/9d5d080d1e3f/12951_2024_2515_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/f4daa066ac4b/12951_2024_2515_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/bdf6cf3b1a18/12951_2024_2515_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/47004465f4ce/12951_2024_2515_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/becd034e7380/12951_2024_2515_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/b0b1d59a2c0b/12951_2024_2515_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/0170665d8afb/12951_2024_2515_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/da8c4b578819/12951_2024_2515_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/b073acd869f5/12951_2024_2515_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/bee611191e0c/12951_2024_2515_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/826e/11097533/9d5d080d1e3f/12951_2024_2515_Fig9_HTML.jpg

相似文献

[1]
Therapeutic potentials of FexMoyS-PEG nanoparticles in colorectal cancer: a multimodal approach via ROS-ferroptosis-glycolysis regulation.

J Nanobiotechnology. 2024-5-16

[2]
Bufalin-Loaded Multifunctional Photothermal Nanoparticles Inhibit the Anaerobic Glycolysis by Targeting SRC-3/HIF-1α Pathway for Improved Mild Photothermal Therapy in CRC.

Int J Nanomedicine. 2024

[3]
Gingerenone A induces ferroptosis in colorectal cancer via targeting suppression of SLC7A11 signaling pathway.

Biomed Pharmacother. 2024-11

[4]
Photothermal FeO nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy.

J Nanobiotechnology. 2024-10-16

[5]
Augment of Ferroptosis with Photothermal Enhanced Fenton Reaction and Glutathione Inhibition for Tumor Synergistic Nano-Catalytic Therapy.

Int J Nanomedicine. 2024

[6]
Icariin promoted ferroptosis by activating mitochondrial dysfunction to inhibit colorectal cancer and synergistically enhanced the efficacy of PD-1 inhibitors.

Phytomedicine. 2025-1

[7]
Nanoliposomes Encapsulated Rapamycin/Resveratrol to Induce Apoptosis and Ferroptosis for Enhanced Colorectal Cancer Therapy.

J Pharm Sci. 2024-8

[8]
Biomimetic modification of macrophage membrane-coated prussian blue nanoparticles loaded with SN-38 to treat colorectal cancer by photothermal-chemotherapy.

Drug Deliv Transl Res. 2025-5

[9]
Suppression of colorectal cancer growth: Interplay between curcumin and metformin through DMT1 downregulation and ROS-mediated pathways.

Biofactors. 2025

[10]
Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation.

Theranostics. 2020-4-6

引用本文的文献

[1]
Precision nanomaterials in colorectal cancer: advancing photodynamic and photothermal therapy.

RSC Adv. 2025-7-25

[2]
Theranostic Applications of Taurine-Derived Carbon Dots in Colorectal Cancer: Ferroptosis Induction and Multifaceted Antitumor Mechanisms.

Int J Nanomedicine. 2025-6-16

[3]
Multifaceted Applications of Nanomaterials in Colorectal Cancer Management: Screening, Diagnostics, and Therapeutics.

Int J Nanomedicine. 2025-6-10

[4]
Therapeutic Approaches with Iron Oxide Nanoparticles to Induce Ferroptosis and Overcome Radioresistance in Cancers.

Pharmaceuticals (Basel). 2025-2-26

[5]
The Role of Reactive Oxygen Species in Colorectal Cancer Initiation and Progression: Perspectives on Theranostic Approaches.

Cancers (Basel). 2025-2-22

[6]
Role of glucose metabolic reprogramming in colorectal cancer progression and drug resistance.

Transl Oncol. 2024-12

本文引用的文献

[1]
Cancer incidence and mortality in China, 2016.

J Natl Cancer Cent. 2022-2-27

[2]
Stimuli-Responsive Nanoradiosensitizers for Enhanced Cancer Radiotherapy.

Small Methods. 2024-1

[3]
Combination cancer imaging and phototherapy mediated by membrane-wrapped nanoparticles.

Int J Hyperthermia. 2023

[4]
CHAC2 promotes lung adenocarcinoma by regulating ROS-mediated MAPK pathway activation.

J Cancer. 2023-5-8

[5]
Tumor microenvironment signaling and therapeutics in cancer progression.

Cancer Commun (Lond). 2023-5

[6]
Is the combination of immunotherapy with conventional chemotherapy the key to increase the efficacy of colorectal cancer treatment?

World J Gastrointest Oncol. 2023-2-15

[7]
Modulating Glycolysis to Improve Cancer Therapy.

Int J Mol Sci. 2023-1-30

[8]
New Frontiers in Colorectal Cancer Treatment Combining Nanotechnology with Photo- and Radiotherapy.

Cancers (Basel). 2023-1-6

[9]
Multifunctional ROS-Responsive and TME-Modulated Lipid-Polymer Hybrid Nanoparticles for Enhanced Tumor Penetration.

Int J Nanomedicine. 2022

[10]
Managing the TME to improve the efficacy of cancer therapy.

Front Immunol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索