文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

光热 FeO 纳米颗粒诱导免疫原性铁死亡协同结直肠癌治疗。

Photothermal FeO nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy.

机构信息

Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.

Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.

出版信息

J Nanobiotechnology. 2024 Oct 16;22(1):630. doi: 10.1186/s12951-024-02909-3.


DOI:10.1186/s12951-024-02909-3
PMID:39415226
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11484360/
Abstract

Photothermal therapy (PTT) is a promising non-invasive treatment that has shown great potential in eliminating tumors. It not only induces apoptosis of cancer cells but also triggers immunogenic cell death (ICD) which could activate the immune system against cancer. However, the immunosuppressive tumor microenvironment (TIME) poses a challenge to triggering strong immune responses with a single treatment, thus limiting the therapeutic effect of cancer immunotherapy. In this study, dual-targeted nano delivery system (GOx@FeNPs) combined with αPD-L1 immune checkpoint blocker could inhibit colorectal cancer (CRC) progression by mediating PTT, ferroptosis and anti-tumor immune response. Briefly, specific tumor delivery was achieved by the cyclic arginine glycyl aspartate (cRGD) peptide and anisamide (AA)  in GOx@FeNPs which not only had a good photothermal effect to realize PTT and induce ICD, but also could deplete glutathione (GSH) and catalyze the production of reactive oxygen species (ROS) from endogenous HO. All these accelerated the Fenton reaction and augmented the process of PTT-induced ICD. Thus, a large amount of tumor specific antigen was released to stimulate the maturation of dendritic cells (DCs) in lymph nodes and enhance the infiltration of CD8 T cells in tumor. At the same time, the combination with αPD-L1 has favorable synergistic effectiveness against CRC with tumor inhibition rate over 90%. Furthermore, GOx@FeNPs had good magnetic resonance imaging (MRI) capability under T2-weighting owing to the presence of Fe, which is favorable for integrated diagnosis and treatment systems of CRC. By constructing a dual-targeted GOx@FeNPs nanoplatform, PTT synergistically combined with ferroptosis was realized to improve the immunotherapeutic effect, providing a new approach for CRC immunotherapy.

摘要

光热疗法(PTT)是一种很有前途的非侵入性治疗方法,在消除肿瘤方面显示出巨大的潜力。它不仅诱导癌细胞凋亡,还触发免疫原性细胞死亡(ICD),从而激活免疫系统对抗癌症。然而,免疫抑制性肿瘤微环境(TIME)对单一治疗引发强烈免疫反应构成挑战,从而限制了癌症免疫治疗的疗效。在这项研究中,双靶向纳米递药系统(GOx@FeNPs)联合αPD-L1 免疫检查点抑制剂可以通过介导 PTT、铁死亡和抗肿瘤免疫反应来抑制结直肠癌(CRC)的进展。简而言之,GOx@FeNPs 中的环状精氨酸-甘氨酸-天冬氨酸(cRGD)肽和茴香酰胺(AA)实现了特异性肿瘤递药,不仅具有良好的光热效应,实现 PTT 和诱导 ICD,还可以耗竭谷胱甘肽(GSH)并催化内源性 HO 产生活性氧(ROS)。所有这些都加速了芬顿反应,增强了 PTT 诱导 ICD 的过程。因此,大量肿瘤特异性抗原被释放出来,刺激淋巴结中树突状细胞(DCs)的成熟,并增强 CD8 T 细胞在肿瘤中的浸润。同时,与αPD-L1 联合使用对 CRC 具有良好的协同疗效,肿瘤抑制率超过 90%。此外,由于 Fe 的存在,GOx@FeNPs 在 T2 加权磁共振成像(MRI)下具有良好的磁共振成像(MRI)能力,有利于 CRC 的综合诊断和治疗系统。通过构建双靶向 GOx@FeNPs 纳米平台,实现了 PTT 与铁死亡的协同作用,提高了免疫治疗效果,为 CRC 免疫治疗提供了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/888a00941249/12951_2024_2909_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/e6f9a42080fc/12951_2024_2909_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/57aa19c7439f/12951_2024_2909_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/927d32bc651d/12951_2024_2909_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/86b354949950/12951_2024_2909_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/7adaa3e12556/12951_2024_2909_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/164bf096bf83/12951_2024_2909_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/94e7ed15e36f/12951_2024_2909_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/888a00941249/12951_2024_2909_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/e6f9a42080fc/12951_2024_2909_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/57aa19c7439f/12951_2024_2909_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/927d32bc651d/12951_2024_2909_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/86b354949950/12951_2024_2909_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/7adaa3e12556/12951_2024_2909_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/164bf096bf83/12951_2024_2909_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/94e7ed15e36f/12951_2024_2909_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6777/11484360/888a00941249/12951_2024_2909_Fig8_HTML.jpg

相似文献

[1]
Photothermal FeO nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy.

J Nanobiotechnology. 2024-10-16

[2]
Based on polydopamine-coated metal organic framework multifunctional nanoplatform for enhanced photothermal/sonodynamicand treatment combined with checkpoint blockade therapy.

Int J Biol Macromol. 2024-6

[3]
Bufalin-Loaded Multifunctional Photothermal Nanoparticles Inhibit the Anaerobic Glycolysis by Targeting SRC-3/HIF-1α Pathway for Improved Mild Photothermal Therapy in CRC.

Int J Nanomedicine. 2024

[4]
Metal-organic framework-mediated multifunctional nanoparticles for combined chemo-photothermal therapy and enhanced immunotherapy against colorectal cancer.

Acta Biomater. 2022-5

[5]
Ultra-small Janus nanoparticle-induced activation of ferroptosis for synergistic tumor immunotherapy.

Acta Biomater. 2024-6

[6]
A Triple-Responsive Polymeric Prodrug Nanoplatform with Extracellular ROS Consumption and Intracellular HO Self-Generation for Imaging-Guided Tumor Chemo-Ferroptosis-Immunotherapy.

Adv Healthc Mater. 2024-6

[7]
TME-Responsive Nanoplatform with Glutathione Depletion for Enhanced Tumor-Specific Mild Photothermal/Gene/Ferroptosis Synergistic Therapy.

Int J Nanomedicine. 2024

[8]
Multifunctional Nanoparticles-Mediated PTT/PDT Synergistic Immune Activation and Antitumor Activity Combined with Anti-PD-L1 Immunotherapy for Breast Cancer Treatment.

Int J Nanomedicine. 2022

[9]
FeO Nanoparticles That Modulate the Polarisation of Tumor-Associated Macrophages Synergize with Photothermal Therapy and Immunotherapy (PD-1/PD-L1 Inhibitors) to Enhance Anti-Tumor Therapy.

Int J Nanomedicine. 2024

[10]
NIR Absorbing Organic Chromophores Combination with NSAIDs for Remodeling of the Inflammatory Microenvironment to Amplify Tumor Ferroptosis-Photothermal Synergistic Therapy.

Small. 2024-8

引用本文的文献

[1]
Engineered iron oxide nanoplatforms: reprogramming immunosuppressive niches for precision cancer theranostics.

Mol Cancer. 2025-9-1

[2]
Comprehensive landscape of cell death mechanisms: from molecular cross-talk to therapeutic innovation in oncology.

Front Cell Dev Biol. 2025-7-16

[3]
Precision nanomaterials in colorectal cancer: advancing photodynamic and photothermal therapy.

RSC Adv. 2025-7-25

[4]
Immunomodulatory effects of photothermal therapy in breast cancer: advances and challenges.

Front Immunol. 2025-7-4

[5]
Recent advances in novel targeting mechanisms for colorectal cancer.

Clin Transl Oncol. 2025-7-11

[6]
Advancements in Nano-Delivery Systems for Photodynamic and Photothermal Therapy to Induce Immunogenic Cell Death in Tumor Immunotherapy.

Int J Nanomedicine. 2025-6-26

[7]
Multifaceted Applications of Nanomaterials in Colorectal Cancer Management: Screening, Diagnostics, and Therapeutics.

Int J Nanomedicine. 2025-6-10

[8]
Photothermal therapeutic effects and biosafety of a carbon nanoparticles-Fe(ii) complex for triple-negative breast cancer.

RSC Adv. 2025-6-10

[9]
Reprogrammed immuno-metabolic environment of cancer: the driving force of ferroptosis resistance.

Mol Cancer. 2025-6-3

[10]
Nanomaterials in the diagnosis and treatment of gastrointestinal tumors: New clinical choices and treatment strategies.

Mater Today Bio. 2025-4-19

本文引用的文献

[1]
Visualizing cancer resistance via nano-quenching and recovery detector of CD44.

J Nanobiotechnology. 2024-7-30

[2]
Framework nucleic acid-based nanoparticles enhance temozolomide sensitivity in glioblastoma.

Drug Resist Updat. 2024-9

[3]
Orally Administrated Hydrogel Harnessing Intratumoral Microbiome and Microbiota-Related Immune Responses for Potentiated Colorectal Cancer Treatment.

Research (Wash D C). 2024-5-8

[4]
Deubiquitinase USP4 suppresses antitumor immunity by inhibiting IRF3 activation and tumor cell-intrinsic interferon response in colorectal cancer.

Cancer Lett. 2024-5-1

[5]
FeO@TiO Microspheres: Harnessing O Release and ROS Generation for Combination CDT/PDT/PTT/Chemotherapy in Tumours.

Nanomaterials (Basel). 2024-3-10

[6]
Recent Trends in Bio-nanomaterials and Non-invasive Combinatorial Approaches of Photothermal Therapy against Cancer.

Nanotheranostics. 2024

[7]
MRI-Guided Tumor Therapy Based on Synergy of Ferroptosis, Immunosuppression Reversal and Disulfidptosis.

Small. 2024-7

[8]
Multiomic molecular characterization of the response to combination immunotherapy in MSS/pMMR metastatic colorectal cancer.

J Immunother Cancer. 2024-2-8

[9]
Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition.

Nat Cell Biol. 2024-1

[10]
Photothermal Ferrotherapy - Induced Immunogenic Cell Death via Iron-Based Ternary Chalcogenide Nanoparticles Against Triple-Negative Breast Cancer.

Small. 2024-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索