文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用藻提取物的环保型合成方法增强氧化铜纳米粒子的光催化和抗菌性能。

An Eco-Friendly Synthesis Approach for Enhanced Photocatalytic and Antibacterial Properties of Copper Oxide Nanoparticles Using Algal Extract.

机构信息

Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.

Department of Botany, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.

出版信息

Int J Nanomedicine. 2024 May 9;19:4137-4162. doi: 10.2147/IJN.S452889. eCollection 2024.


DOI:10.2147/IJN.S452889
PMID:38756417
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11096669/
Abstract

BACKGROUND: In the current scenario, the synthesis of nanoparticles (NPs) using environmentally benign methods has gained significant attention due to their facile processes, cost-effectiveness, and eco-friendly nature. METHODS: In the present study, copper oxide nanoparticles (CuO NPs) were synthesized using aqueous extract of  algae as a reducing, stabilizing, and capping agent. The synthesized CuO NPs were characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and field emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). RESULTS: XRD investigation revealed that the biosynthesized CuO NPs were nanocrystalline with high-phase purity and size in the range of 4.26 nm to 28.51 nm. FTIR spectra confirmed the existence of secondary metabolites on the surface of the synthesized CuO NPs, with characteristic Cu-O vibrations being identified around 600 cm, 496 cm, and 440 cm. The FE-SEM images predicted that the enhancement of the algal extract amount converted the flattened rice-like structures of CuO NPs into flower petal-like structures. Furthermore, the degradation ability of biosynthesized CuO NPs was investigated against Amido black 10B (AB10B) dye. The results displayed that the optimal degradation efficacy of AB10B dye was 94.19%, obtained at 6 pH, 50 ppm concentration of dye, and 0.05 g dosage of CuO NPs in 90 min with a pseudo-first-order rate constant of 0.0296 min. The CuO-1 NPs synthesized through algae exhibited notable antibacterial efficacy against with a zone of inhibition (ZOI) of 22 mm and against with a ZOI of 17 mm. CONCLUSION: Based on the findings of this study, it can be concluded that utilizing algae for the synthesis of CuO NPs presents a promising solution for addressing environmental contamination.

摘要

背景:在当前情况下,由于其简便的工艺、成本效益和环保性质,使用环保方法合成纳米粒子 (NPs) 引起了人们的极大关注。

方法:本研究中,使用藻类的水提物作为还原剂、稳定剂和封端剂来合成氧化铜纳米粒子 (CuO NPs)。采用 X 射线衍射 (XRD)、紫外-可见光谱 (UV-Vis)、傅里叶变换红外光谱 (FTIR)、动态光散射 (DLS) 和场发射扫描电子显微镜 (FE-SEM) 结合能谱 (EDS) 对合成的 CuO NPs 进行了表征。

结果:XRD 研究表明,生物合成的 CuO NPs 是具有高相纯度和 4.26nm 至 28.51nm 范围内的纳米晶。FTIR 谱证实了合成的 CuO NPs 表面存在次生代谢物,特征 Cu-O 振动在 600cm、496cm 和 440cm 左右被识别。FE-SEM 图像预测,藻类提取物量的增加将 CuO NPs 的扁平米粒状结构转化为花瓣状结构。此外,还研究了生物合成的 CuO NPs 对 Amido black 10B (AB10B) 染料的降解能力。结果表明,AB10B 染料的最佳降解效率为 94.19%,在 6 pH、50ppm 染料浓度和 0.05g CuO NPs 剂量下,在 90min 内达到,准一级速率常数为 0.0296min。通过藻类合成的 CuO-1 NPs 对 表现出显著的抗菌功效,抑菌圈 (ZOI) 为 22mm,对 表现出 ZOI 为 17mm。

结论:基于本研究的结果,可以得出结论,利用藻类合成 CuO NPs 为解决环境污染提供了一种有前途的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/a5026bd5a455/IJN-19-4137-g0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/7e0bdb99c0c2/IJN-19-4137-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/39a116d16a78/IJN-19-4137-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/2e33f64b20c5/IJN-19-4137-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/240fdc662ae6/IJN-19-4137-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/c00c96d31a71/IJN-19-4137-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/1ee8c5b89532/IJN-19-4137-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/7023dcd01262/IJN-19-4137-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/8755c6fa64cd/IJN-19-4137-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/b69aebe545a8/IJN-19-4137-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/f48a8feb3913/IJN-19-4137-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/7f0d7ec72118/IJN-19-4137-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/30c67c2a6ae6/IJN-19-4137-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/471788dae0b4/IJN-19-4137-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/fbd2fb3a3e59/IJN-19-4137-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/d4e1ee182f4e/IJN-19-4137-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/cf4d2beeebed/IJN-19-4137-g0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/4ea529ae4e56/IJN-19-4137-g0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/170a9b425979/IJN-19-4137-g0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/b6de823f1053/IJN-19-4137-g0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/a7e73da6d341/IJN-19-4137-g0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/a5026bd5a455/IJN-19-4137-g0021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/7e0bdb99c0c2/IJN-19-4137-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/39a116d16a78/IJN-19-4137-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/2e33f64b20c5/IJN-19-4137-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/240fdc662ae6/IJN-19-4137-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/c00c96d31a71/IJN-19-4137-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/1ee8c5b89532/IJN-19-4137-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/7023dcd01262/IJN-19-4137-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/8755c6fa64cd/IJN-19-4137-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/b69aebe545a8/IJN-19-4137-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/f48a8feb3913/IJN-19-4137-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/7f0d7ec72118/IJN-19-4137-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/30c67c2a6ae6/IJN-19-4137-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/471788dae0b4/IJN-19-4137-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/fbd2fb3a3e59/IJN-19-4137-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/d4e1ee182f4e/IJN-19-4137-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/cf4d2beeebed/IJN-19-4137-g0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/4ea529ae4e56/IJN-19-4137-g0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/170a9b425979/IJN-19-4137-g0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/b6de823f1053/IJN-19-4137-g0019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/a7e73da6d341/IJN-19-4137-g0020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ab/11096669/a5026bd5a455/IJN-19-4137-g0021.jpg

相似文献

[1]
An Eco-Friendly Synthesis Approach for Enhanced Photocatalytic and Antibacterial Properties of Copper Oxide Nanoparticles Using Algal Extract.

Int J Nanomedicine. 2024

[2]
Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells.

Food Chem Toxicol. 2022-10

[3]
Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic.

Sci Rep. 2023-8-28

[4]
Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application.

Int J Nanomedicine. 2013-2-28

[5]
Biosynthesis of CuO nanoparticle using leaf extracts of Ocimum lamiifolium Hochst. ex Benth and Withana somnifera (L) Dunal for antibacterial activity.

Sci Rep. 2024-10-12

[6]
An Eco-friendly Approach to ZnO NP Synthesis Using Blanco Peel/Extract: Characterization and Antibacterial and Photocatalytic Activity.

ACS Appl Bio Mater. 2024-5-20

[7]
Alpinia officinarum mediated copper oxide nanoparticles: synthesis and its antifungal activity against Colletotrichum gloeosporioides.

Environ Sci Pollut Res Int. 2023-3

[8]
Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.).

Microb Pathog. 2019-4-17

[9]
Green Synthesis, Characterization and Antimicrobial Activity of Copper Oxide Nanomaterial Derived from .

Int J Nanomedicine. 2020-4-16

[10]
Green synthesis of polyethylene glycol coated, ciprofloxacin loaded CuO nanoparticles and its antibacterial activity against Staphylococcus aureus.

Sci Rep. 2024-9-11

引用本文的文献

[1]
Recent advances in phyto- and microorganisms-mediated synthesis of copper nanoparticles and their emerging applications in healthcare, environment, agriculture and food industry.

Bioprocess Biosyst Eng. 2025-7-9

[2]
Facile fabrication of a novel chitosan/carboxymethyl cellulose/bentonite/CuO nanocomposite for enhanced photocatalytic and antibacterial applications.

RSC Adv. 2025-2-3

本文引用的文献

[1]
Mitigation of the hyperglycemic effect of streptozotocin-induced diabetes albino rats using biosynthesized copper oxide nanoparticles.

Biomol Concepts. 2023-1-1

[2]
Synthesis of hydroxyethylcellulose phthalate-modified silver nanoparticles and their multifunctional applications as an efficient antibacterial, photocatalytic and mercury-selective sensing agent.

Int J Biol Macromol. 2024-1

[3]
A highly selective Hg colorimetric sensor and antimicrobial agent based on green synthesized silver nanoparticles using extract.

RSC Adv. 2023-10-2

[4]
algae-mediated copper oxide nanoparticles as a robust and recyclable catalyst for the degradation of noxious dyes from wastewater.

RSC Adv. 2023-9-25

[5]
Recent Insights into Nanotechnology in Colorectal Cancer.

Appl Biochem Biotechnol. 2024-7

[6]
Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic.

Sci Rep. 2023-8-28

[7]
A mini review on green nanotechnology and its development in biological effects.

Arch Microbiol. 2023-3-22

[8]
Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells.

Appl Biochem Biotechnol. 2023-1

[9]
RETRACTED: Mycosynthesis of Hematite (α-FeO) Nanoparticles Using and Their Antimicrobial and Photocatalytic Activities.

Bioengineering (Basel). 2022-8-17

[10]
Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review.

Front Surg. 2022-8-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索