Suppr超能文献

迈向放射学中的可解释人工智能:使用弱监督学习的集成类激活映射在胸部X光图像中进行有效的胸部疾病定位

Toward explainable AI in radiology: Ensemble-CAM for effective thoracic disease localization in chest X-ray images using weak supervised learning.

作者信息

Aasem Muhammad, Javed Iqbal Muhammad

机构信息

Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan.

出版信息

Front Big Data. 2024 May 2;7:1366415. doi: 10.3389/fdata.2024.1366415. eCollection 2024.

Abstract

Chest X-ray (CXR) imaging is widely employed by radiologists to diagnose thoracic diseases. Recently, many deep learning techniques have been proposed as computer-aided diagnostic (CAD) tools to assist radiologists in minimizing the risk of incorrect diagnosis. From an application perspective, these models have exhibited two major challenges: (1) They require large volumes of annotated data at the training stage and (2) They lack explainable factors to justify their outcomes at the prediction stage. In the present study, we developed a class activation mapping (CAM)-based ensemble model, called Ensemble-CAM, to address both of these challenges via weakly supervised learning by employing explainable AI (XAI) functions. Ensemble-CAM utilizes class labels to predict the location of disease in association with interpretable features. The proposed work leverages ensemble and transfer learning with class activation functions to achieve three objectives: (1) minimizing the dependency on strongly annotated data when locating thoracic diseases, (2) enhancing confidence in predicted outcomes by visualizing their interpretable features, and (3) optimizing cumulative performance via fusion functions. Ensemble-CAM was trained on three CXR image datasets and evaluated through qualitative and quantitative measures via heatmaps and Jaccard indices. The results reflect the enhanced performance and reliability in comparison to existing standalone and ensembled models.

摘要

胸部X光(CXR)成像被放射科医生广泛用于诊断胸部疾病。最近,许多深度学习技术被提出作为计算机辅助诊断(CAD)工具,以帮助放射科医生将错误诊断的风险降至最低。从应用角度来看,这些模型面临两个主要挑战:(1)在训练阶段需要大量带注释的数据;(2)在预测阶段缺乏可解释的因素来证明其结果的合理性。在本研究中,我们开发了一种基于类激活映射(CAM)的集成模型,称为Ensemble-CAM,通过采用可解释人工智能(XAI)功能进行弱监督学习来应对这两个挑战。Ensemble-CAM利用类标签来预测与可解释特征相关的疾病位置。所提出的工作利用集成和迁移学习以及类激活函数来实现三个目标:(1)在定位胸部疾病时尽量减少对强注释数据的依赖;(2)通过可视化其可解释特征来增强对预测结果的信心;(3)通过融合函数优化累积性能。Ensemble-CAM在三个CXR图像数据集上进行训练,并通过热图和杰卡德指数进行定性和定量评估。结果表明,与现有的独立模型和集成模型相比,其性能和可靠性得到了提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d5f/11096460/b0dbbaeb2729/fdata-07-1366415-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验