Suppr超能文献

贝叶斯设计的合成生物系统。

Bayesian design of synthetic biological systems.

机构信息

Center for Bioinformatics, Division of Molecular Biosciences, Institute of Mathematical Sciences, Imperial College London, London SW7 2AZ, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15190-5. doi: 10.1073/pnas.1017972108. Epub 2011 Aug 29.

Abstract

Here we introduce a new design framework for synthetic biology that exploits the advantages of Bayesian model selection. We will argue that the difference between inference and design is that in the former we try to reconstruct the system that has given rise to the data that we observe, whereas in the latter, we seek to construct the system that produces the data that we would like to observe, i.e., the desired behavior. Our approach allows us to exploit methods from Bayesian statistics, including efficient exploration of models spaces and high-dimensional parameter spaces, and the ability to rank models with respect to their ability to generate certain types of data. Bayesian model selection furthermore automatically strikes a balance between complexity and (predictive or explanatory) performance of mathematical models. To deal with the complexities of molecular systems we employ an approximate Bayesian computation scheme which only requires us to simulate from different competing models to arrive at rational criteria for choosing between them. We illustrate the advantages resulting from combining the design and modeling (or in silico prototyping) stages currently seen as separate in synthetic biology by reference to deterministic and stochastic model systems exhibiting adaptive and switch-like behavior, as well as bacterial two-component signaling systems.

摘要

在这里,我们引入了一个新的合成生物学设计框架,该框架利用了贝叶斯模型选择的优势。我们将论证,推理和设计的区别在于,前者我们试图重建产生我们所观察到的数据的系统,而后者,我们寻求构建产生我们希望观察到的数据的系统,即期望的行为。我们的方法允许我们利用贝叶斯统计学的方法,包括对模型空间和高维参数空间的有效探索,以及对模型生成特定类型数据的能力进行排序的能力。贝叶斯模型选择还自动在数学模型的复杂性和(预测或解释)性能之间取得平衡。为了处理分子系统的复杂性,我们采用了一种近似贝叶斯计算方案,该方案只要求我们从不同的竞争模型中进行模拟,以得出在它们之间进行选择的合理标准。我们通过参考表现出自适应和开关样行为的确定性和随机模型系统以及细菌双组分信号系统,说明了将目前在合成生物学中视为独立的设计和建模(或计算机原型设计)阶段结合起来所带来的优势。

相似文献

1
Bayesian design of synthetic biological systems.贝叶斯设计的合成生物系统。
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15190-5. doi: 10.1073/pnas.1017972108. Epub 2011 Aug 29.
7
Convolutional Neural Networks as Summary Statistics for Approximate Bayesian Computation.卷积神经网络作为近似贝叶斯计算的汇总统计量。
IEEE/ACM Trans Comput Biol Bioinform. 2022 Nov-Dec;19(6):3353-3365. doi: 10.1109/TCBB.2021.3108695. Epub 2022 Dec 8.

引用本文的文献

5
Modelling daily weight variation in honey bee hives.模拟蜜蜂蜂巢的每日体重变化。
PLoS Comput Biol. 2023 Mar 1;19(3):e1010880. doi: 10.1371/journal.pcbi.1010880. eCollection 2023 Mar.
6
Chaos in synthetic microbial communities.人工合成微生物群落中的混沌。
PLoS Comput Biol. 2022 Oct 10;18(10):e1010548. doi: 10.1371/journal.pcbi.1010548. eCollection 2022 Oct.
9
Mathematical Modelling in Plant Synthetic Biology.植物合成生物学中的数学建模。
Methods Mol Biol. 2022;2379:209-251. doi: 10.1007/978-1-0716-1791-5_13.

本文引用的文献

1
Lack of confidence in approximate Bayesian computation model choice.对近似贝叶斯计算模型选择缺乏信心。
Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15112-7. doi: 10.1073/pnas.1102900108. Epub 2011 Aug 29.
2
GPU accelerated biochemical network simulation.GPU 加速的生化网络模拟。
Bioinformatics. 2011 Mar 15;27(6):874-6. doi: 10.1093/bioinformatics/btr015. Epub 2011 Jan 11.
6
Next-generation synthetic gene networks.下一代合成基因网络。
Nat Biotechnol. 2009 Dec;27(12):1139-50. doi: 10.1038/nbt.1591.
8
Systems biology of stem cell fate and cellular reprogramming.干细胞命运与细胞重编程的系统生物学
Nat Rev Mol Cell Biol. 2009 Oct;10(10):672-81. doi: 10.1038/nrm2766. Epub 2009 Sep 9.
10
iBioSim: a tool for the analysis and design of genetic circuits.iBioSim:用于遗传电路分析和设计的工具。
Bioinformatics. 2009 Nov 1;25(21):2848-9. doi: 10.1093/bioinformatics/btp457. Epub 2009 Jul 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验