Suppr超能文献

DARE-ISC 模型预测普通人群和心房颤动患者 1 年内发生缺血性卒中的风险:一项丹麦全国性队列研究。

DARE-ISC model for prediction of 1-year ischaemic stroke risk in the general population and atrial fibrillation patients: a Danish nationwide cohort study.

机构信息

Department of Economics, University of Southern Denmark, Odense, Denmark

Department of Cardiology, Gødstrup Hospital, Herning, Denmark.

出版信息

BMJ Open. 2024 May 16;14(5):e076640. doi: 10.1136/bmjopen-2023-076640.

Abstract

OBJECTIVES

To develop a risk assessment model (DAnish REgister Ischaemic Stroke Classifier, DARE-ISC) for predicting 1-year primary ischaemic stroke/systemic embolism (SE) in the general population. Secondly, to validate the accuracy DARE-ISC in atrial fibrillation (AF) patients where well-established models and risk scores exist.

DESIGN

Retrospective cohort study. DARE-ISC was developed using gradient boosting decision trees with information from 375 covariates including baseline information on relevant diagnoses, demographic characteristics, registered health-services, lifestyle-related covariates, hereditary stroke components, drug prescriptions and stress proxies.

SETTING

Danish nationwide registries.

PARTICIPANTS

All Danish individuals aged ≥18 from 2010 to 2017 (n=35 519 348 person-years). The model was trained on the 2010-2016 cohorts with validation in the 2017 cohort.

PRIMARY AND SECONDARY OUTCOME MEASURES

Model optimisation and validation were performed through comparison of the area under the receiver operating characteristic curve (AUC) and average precision scores. Additionally, the relative importance of the model covariates was derived using SHAP values.

RESULTS

DARE-ISC had an AUC (95% CI) of 0.874 (0.871 to 0.876) in the general population. In AF patients, DARE-ISC was superior to the GARFIELD-AF risk model and CHADS-VASc score with AUC of 0.779 (95% CI 0.75 to 0.806), 0.704 (95% CI 0.674 to 0.732) and 0.681 (95% CI 0.652 to 0.709), respectively. Furthermore, in AF patients, DARE-ISC had an average threefold and fourfold higher ratio of correctly identified strokes compared with the GARFIELD-AF risk model and CHADS-VASc score, as indicated by average precision scores of 0.119, 0.041 and 0.034, respectively.

CONCLUSIONS

DARE-ISC had a very high stroke prediction accuracy in the general population and was superior to the GARFIELD-AF risk model and CHADS-VASc score for predicting ischaemic stroke/SE in AF patients.

摘要

目的

开发一种风险评估模型(丹麦登记缺血性卒中分类器,DARE-ISC),用于预测一般人群中 1 年原发性缺血性卒中/全身性栓塞(SE)。其次,验证 DARE-ISC 在房颤(AF)患者中的准确性,因为这些患者有完善的模型和风险评分。

设计

回顾性队列研究。使用梯度提升决策树,结合 375 个协变量的信息,包括相关诊断、人口统计学特征、登记的健康服务、与生活方式相关的协变量、遗传性卒中成分、药物处方和压力代理的基线信息。

设置

丹麦全国性登记处。

参与者

2010 年至 2017 年期间,所有年龄≥18 岁的丹麦个体(35 519 348 人年)。该模型在 2010-2016 年的队列中进行训练,并在 2017 年的队列中进行验证。

主要和次要结果

通过比较受试者工作特征曲线下面积(AUC)和平均精度评分,对模型进行优化和验证。此外,通过 SHAP 值得出模型协变量的相对重要性。

结果

在普通人群中,DARE-ISC 的 AUC(95%CI)为 0.874(0.871 至 0.876)。在房颤患者中,DARE-ISC 优于 GARFIELD-AF 风险模型和 CHADS-VASc 评分,AUC 分别为 0.779(95%CI 0.75 至 0.806)、0.704(95%CI 0.674 至 0.732)和 0.681(95%CI 0.652 至 0.709)。此外,在房颤患者中,DARE-ISC 对卒中的正确识别率比 GARFIELD-AF 风险模型和 CHADS-VASc 评分分别高出三倍和四倍,平均精度评分分别为 0.119、0.041 和 0.034。

结论

DARE-ISC 在普通人群中具有非常高的卒中预测准确性,在预测房颤患者的缺血性卒中/SE 方面优于 GARFIELD-AF 风险模型和 CHADS-VASc 评分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f61/11103190/ded8970b7fdf/bmjopen-2023-076640f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验