Department of Economics, University of Southern Denmark, Odense, Denmark
Department of Cardiology, Gødstrup Hospital, Herning, Denmark.
BMJ Open. 2024 May 16;14(5):e076640. doi: 10.1136/bmjopen-2023-076640.
To develop a risk assessment model (DAnish REgister Ischaemic Stroke Classifier, DARE-ISC) for predicting 1-year primary ischaemic stroke/systemic embolism (SE) in the general population. Secondly, to validate the accuracy DARE-ISC in atrial fibrillation (AF) patients where well-established models and risk scores exist.
Retrospective cohort study. DARE-ISC was developed using gradient boosting decision trees with information from 375 covariates including baseline information on relevant diagnoses, demographic characteristics, registered health-services, lifestyle-related covariates, hereditary stroke components, drug prescriptions and stress proxies.
Danish nationwide registries.
All Danish individuals aged ≥18 from 2010 to 2017 (n=35 519 348 person-years). The model was trained on the 2010-2016 cohorts with validation in the 2017 cohort.
Model optimisation and validation were performed through comparison of the area under the receiver operating characteristic curve (AUC) and average precision scores. Additionally, the relative importance of the model covariates was derived using SHAP values.
DARE-ISC had an AUC (95% CI) of 0.874 (0.871 to 0.876) in the general population. In AF patients, DARE-ISC was superior to the GARFIELD-AF risk model and CHADS-VASc score with AUC of 0.779 (95% CI 0.75 to 0.806), 0.704 (95% CI 0.674 to 0.732) and 0.681 (95% CI 0.652 to 0.709), respectively. Furthermore, in AF patients, DARE-ISC had an average threefold and fourfold higher ratio of correctly identified strokes compared with the GARFIELD-AF risk model and CHADS-VASc score, as indicated by average precision scores of 0.119, 0.041 and 0.034, respectively.
DARE-ISC had a very high stroke prediction accuracy in the general population and was superior to the GARFIELD-AF risk model and CHADS-VASc score for predicting ischaemic stroke/SE in AF patients.
开发一种风险评估模型(丹麦登记缺血性卒中分类器,DARE-ISC),用于预测一般人群中 1 年原发性缺血性卒中/全身性栓塞(SE)。其次,验证 DARE-ISC 在房颤(AF)患者中的准确性,因为这些患者有完善的模型和风险评分。
回顾性队列研究。使用梯度提升决策树,结合 375 个协变量的信息,包括相关诊断、人口统计学特征、登记的健康服务、与生活方式相关的协变量、遗传性卒中成分、药物处方和压力代理的基线信息。
丹麦全国性登记处。
2010 年至 2017 年期间,所有年龄≥18 岁的丹麦个体(35 519 348 人年)。该模型在 2010-2016 年的队列中进行训练,并在 2017 年的队列中进行验证。
通过比较受试者工作特征曲线下面积(AUC)和平均精度评分,对模型进行优化和验证。此外,通过 SHAP 值得出模型协变量的相对重要性。
在普通人群中,DARE-ISC 的 AUC(95%CI)为 0.874(0.871 至 0.876)。在房颤患者中,DARE-ISC 优于 GARFIELD-AF 风险模型和 CHADS-VASc 评分,AUC 分别为 0.779(95%CI 0.75 至 0.806)、0.704(95%CI 0.674 至 0.732)和 0.681(95%CI 0.652 至 0.709)。此外,在房颤患者中,DARE-ISC 对卒中的正确识别率比 GARFIELD-AF 风险模型和 CHADS-VASc 评分分别高出三倍和四倍,平均精度评分分别为 0.119、0.041 和 0.034。
DARE-ISC 在普通人群中具有非常高的卒中预测准确性,在预测房颤患者的缺血性卒中/SE 方面优于 GARFIELD-AF 风险模型和 CHADS-VASc 评分。