Suppr超能文献

深度学习方法探索年龄相关性黄斑变性多基因风险评分与视网膜光学相干断层扫描的关联:一项初步研究。

A deep learning approach to explore the association of age-related macular degeneration polygenic risk score with retinal optical coherence tomography: A preliminary study.

机构信息

Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland.

Faculty of Biomedical Engineering, Silesian University of Technology, Zabrze, Poland.

出版信息

Acta Ophthalmol. 2024 Nov;102(7):e1029-e1039. doi: 10.1111/aos.16710. Epub 2024 May 18.

Abstract

PURPOSE

Age-related macular degeneration (AMD) is a complex eye disorder affecting millions worldwide. This article uses deep learning techniques to investigate the relationship between AMD, genetics and optical coherence tomography (OCT) scans.

METHODS

The cohort consisted of 332 patients, of which 235 were diagnosed with AMD and 97 were controls with no signs of AMD. The genome-wide association studies summary statistics utilized to establish the polygenic risk score (PRS) in relation to AMD were derived from the GERA European study. A PRS estimation based on OCT volumes for both eyes was performed using a proprietary convolutional neural network (CNN) model supported by machine learning models. The method's performance was assessed using numerical evaluation metrics, and the Grad-CAM technique was used to evaluate the results by visualizing the features learned by the model.

RESULTS

The best results were obtained with the CNN and the Extra Tree regressor (MAE = 0.55, MSE = 0.49, RMSE = 0.70, R = 0.34). Extending the feature vector with additional information on AMD diagnosis, age and smoking history improved the results slightly, with mainly AMD diagnosis used by the model (MAE = 0.54, MSE = 0.44, RMSE = 0.66, R = 0.42). Grad-CAM heatmap evaluation showed that the model decisions rely on retinal morphology factors relevant to AMD diagnosis.

CONCLUSION

The developed method allows an efficient PRS estimation from OCT images. A new technique for analysing the association of OCT images with PRS of AMD, using a deep learning approach, may provide an opportunity to discover new associations between genotype-based AMD risk and retinal morphology.

摘要

目的

年龄相关性黄斑变性(AMD)是一种影响全球数百万人的复杂眼部疾病。本文使用深度学习技术研究 AMD、遗传学和光学相干断层扫描(OCT)扫描之间的关系。

方法

该队列包括 332 名患者,其中 235 名被诊断为 AMD,97 名为无 AMD 迹象的对照组。用于建立与 AMD 相关的多基因风险评分(PRS)的全基因组关联研究汇总统计数据源自 GERA 欧洲研究。使用基于机器学习模型的专有卷积神经网络(CNN)模型对双眼 OCT 体积进行 PRS 估计。使用数值评估指标评估方法的性能,并使用 Grad-CAM 技术通过可视化模型学习的特征来评估结果。

结果

CNN 和 Extra Tree 回归器(MAE=0.55,MSE=0.49,RMSE=0.70,R=0.34)获得了最佳结果。通过扩展包含 AMD 诊断、年龄和吸烟史的附加信息的特征向量,结果略有改善,主要使用模型中的 AMD 诊断(MAE=0.54,MSE=0.44,RMSE=0.66,R=0.42)。Grad-CAM 热图评估表明,模型决策依赖于与 AMD 诊断相关的视网膜形态学因素。

结论

所开发的方法允许从 OCT 图像中进行高效的 PRS 估计。使用深度学习方法分析 OCT 图像与 AMD PRS 的关联的新技术可能为发现基于基因型的 AMD 风险与视网膜形态之间的新关联提供机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验