Suppr超能文献

标准化及其他方法对均值差异进行元分析。

Standardization and other approaches to meta-analyze differences in means.

机构信息

Professor of Research Design and Statistics (retired), Internet Society for Sport Science, Auckland, New Zealand.

Professor of Nutrition, Metabolism, and Exercise, Massey University, Auckland, New Zealand.

出版信息

Stat Med. 2024 Jul 20;43(16):3092-3108. doi: 10.1002/sim.10114. Epub 2024 May 18.

Abstract

Meta-analysts often use standardized mean differences (SMD) to combine mean effects from studies in which the dependent variable has been measured with different instruments or scales. In this tutorial we show how the SMD is properly calculated as the difference in means divided by a between-subject reference-group, control-group, or pooled pre-intervention SD, usually free of measurement error. When combining mean effects from controlled trials and crossovers, most meta-analysts have divided by either the pooled SD of change scores, the pooled SD of post-intervention scores, or the pooled SD of pre- and post-intervention scores, resulting in SMDs that are biased and difficult to interpret. The frequent use of such inappropriate standardizing SDs by meta-analysts in three medical journals we surveyed is due to misleading advice in peer-reviewed publications and meta-analysis packages. Even with an appropriate standardizing SD, meta-analysis of SMDs increases heterogeneity artifactually via differences in the standardizing SD between settings. Furthermore, the usual magnitude thresholds for standardized mean effects are not thresholds for clinically important differences. We therefore explain how to use other approaches to combining mean effects of disparate measures: log transformation of factor effects (response ratios) and of percent effects converted to factors; rescaling of psychometrics to percent of maximum range; and rescaling with minimum clinically important differences. In the absence of clinically important differences, we explain how standardization after meta-analysis with appropriately transformed or rescaled pre-intervention SDs can be used to assess magnitudes of a meta-analyzed mean effect in different settings.

摘要

元分析人员通常使用标准化均数差值(SMD)来合并使用不同仪器或量表测量的研究中的均数效应。在本教程中,我们将展示如何正确计算 SMD,即均值差异除以受试者间参考组、对照组或无测量误差的混合预干预 SD。当合并对照试验和交叉设计的均数效应时,大多数元分析人员将其除以变化得分的混合 SD、干预后得分的混合 SD 或预-后干预得分的混合 SD,从而导致 SMD 存在偏差且难以解释。我们调查的三个医学期刊中的元分析人员经常使用这种不适当的标准化 SD,是因为同行评审出版物和元分析软件包中存在误导性建议。即使使用适当的标准化 SD,SMD 的元分析也会通过不同环境之间的标准化 SD 差异人为地增加异质性。此外,标准化均数效应的常用幅度阈值不是临床重要差异的阈值。因此,我们解释了如何使用其他方法来合并不同测量方法的均数效应:因子效应(反应比)和转换为因子的百分比效应的对数转换;心理计量学到最大范围百分比的重新缩放;以及使用最小临床重要差异的重新缩放。在没有临床重要差异的情况下,我们解释了如何在使用适当转换或重新缩放的预干预 SD 进行元分析后进行标准化,以评估元分析均数效应在不同环境中的幅度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验