Suppr超能文献

TSSK-Net:基于图像级标注的视网膜 OCT 图像弱监督生物标志物定位与分割。

TSSK-Net: Weakly supervised biomarker localization and segmentation with image-level annotation in retinal OCT images.

机构信息

School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430070, China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan, 430070, China.

School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan, 430070, China; Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time Industrial System, Wuhan, 430070, China.

出版信息

Comput Biol Med. 2023 Feb;153:106467. doi: 10.1016/j.compbiomed.2022.106467. Epub 2022 Dec 21.

Abstract

The localization and segmentation of biomarkers in OCT images are critical steps in retina-related disease diagnosis. Although fully supervised deep learning models can segment pathological regions, their performance relies on labor-intensive pixel-level annotations. Compared with dense pixel-level annotation, image-level annotation can reduce the burden of manual annotation. Existing methods for image-level annotation are usually based on class activation maps (CAM). However, current methods still suffer from model collapse, training instability, and anatomical mismatch due to the considerable variation in retinal biomarkers' shape, texture, and size. This paper proposes a novel weakly supervised biomarkers localization and segmentation method, requiring only image-level annotations. The technique is a Teacher-Student network with joint Self-supervised contrastive learning and Knowledge distillation-based anomaly localization, namely TSSK-Net. Specifically, we treat retinal biomarker regions as abnormal regions distinct from normal regions. First, we propose a novel pre-training strategy based on supervised contrastive learning that encourages the model to learn the anatomical structure of normal OCT images. Second, we design a fine-tuning module and propose a novel hybrid network structure. The network includes supervised contrastive loss for feature learning and cross-entropy loss for classification learning. To further improve the performance, we propose an efficient strategy to combine these two losses to preserve the anatomical structure and enhance the encoding representation of features. Finally, we design a knowledge distillation-based anomaly segmentation method that is effectively combined with the previous model to alleviate the challenge of insufficient supervision. Experimental results on a local dataset and a public dataset demonstrated the effectiveness of our proposed method. Our proposed method can effectively reduce the annotation burden of ophthalmologists in OCT images.

摘要

OCT 图像中生物标志物的定位和分割是视网膜相关疾病诊断的关键步骤。尽管完全监督的深度学习模型可以分割病理性区域,但它们的性能依赖于劳动密集型的像素级注释。与密集的像素级注释相比,图像级注释可以减轻手动注释的负担。现有的图像级注释方法通常基于类激活图(CAM)。然而,由于视网膜生物标志物的形状、纹理和大小存在很大差异,当前的方法仍然存在模型崩溃、训练不稳定和解剖不匹配的问题。本文提出了一种新的基于弱监督的生物标志物定位和分割方法,仅需要图像级注释。该技术是一种带有联合自监督对比学习和基于知识蒸馏的异常定位的师生网络,即 TSSK-Net。具体来说,我们将视网膜生物标志物区域视为与正常区域不同的异常区域。首先,我们提出了一种基于监督对比学习的新预训练策略,鼓励模型学习正常 OCT 图像的解剖结构。其次,我们设计了一个微调模块,并提出了一种新的混合网络结构。该网络包括用于特征学习的监督对比损失和用于分类学习的交叉熵损失。为了进一步提高性能,我们提出了一种有效的策略,将这两种损失结合起来,以保留解剖结构并增强特征的编码表示。最后,我们设计了一种基于知识蒸馏的异常分割方法,有效地与前面的模型结合,以缓解监督不足的挑战。在本地数据集和公共数据集上的实验结果表明了我们提出的方法的有效性。我们提出的方法可以有效地减轻眼科医生在 OCT 图像中的注释负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验