文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

不同 COVID-19 疫苗平台作为加强针的可互换性:一项模拟真实世界实践的 3 期研究。

Interchangeability of different COVID-19 vaccine platforms as booster doses: A phase 3 study mimicking real-world practice.

机构信息

Institute for Global Health, University of Siena, Siena, Italy; Department of Pediatrics, Oxford University, Oxford, UK.

CRIE UNIFESP, Reference Center for Special Immunobiologicals, Federal University of São Paulo, São Paulo, Brazil.

出版信息

Vaccine. 2024 Jul 25;42(19):3989-3998. doi: 10.1016/j.vaccine.2024.05.009. Epub 2024 May 17.


DOI:10.1016/j.vaccine.2024.05.009
PMID:38762360
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11252665/
Abstract

BACKGROUND: The COVID-19 pandemic is over but the highly immunized or naturally exposed global population still requires booster vaccinations against newly emerging SARS-CoV-2 variants. We assessed safety and immunogenicity of booster doses of COVID-19 vaccines based on three different platforms in a setting that mimics the current routine practice in Brazil. METHODS: In this phase 3 study from 14 February 2023 to 12 June 2023 we enrolled previously immunized adults to receive an additional booster dose of one of three vaccines. Immunogenicity against ancestor SARS-CoV-2 and Omicron BF.7, BQ.1.1.3, and XBB.1.5.6 sub-lineages was measured as ELISA IgG or virus neutralizing (VNT) antibodies and safety/reactogenicity assessed using diary cards. RESULTS: Volunteers with a history of full primary COVID-19 immunization striated to three cohorts according to their previous booster vaccination history-0 (n = 26), 1 (n = 140) or 2 (n = 606) booster vaccinations-were randomized 2:1:1 to receive either recombinant protein (SCB-2019, Clover), adenovirus-vector (ChAdOx1-S, AstraZeneca/Fiocruz), or mRNA (BNT162b2, Pfizer/Wyeth). Baseline antibody titers were higher in individuals who had received one or two boosters and titers against both ancestor and Omicron sub-lineages increased in all groups regardless of the number of previous booster doses or the vaccine used. Day 28 geometric mean titers (GMTs) and geometric mean-fold rises (GMFR) against all variants were higher after BNT162b than SCB-2019 or ChAdOx1-S, but BNT162b groups displayed more rapid antibody waning at Day 84. Within cohorts each vaccine elicited similar GMFR against the different SARS-CoV-2 strains. All vaccines were well tolerated with similar solicited reactogenicity profiles. CONCLUSIONS: Protein, adenovirus-vector or mRNA vaccine boosters were equally well tolerated and immunogenic against ancestor SARS-CoV-2 and Omicron sub-lineages in fully primed adults with 0-2 prior boosters. BNT162b induced the highest immune responses but also the most rapid waning of antibodies 3 months after vaccination. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, identifier NCT05812586.

摘要

背景:COVID-19 大流行已经结束,但高度免疫或自然暴露的全球人口仍需要针对新出现的 SARS-CoV-2 变体进行加强接种。我们评估了基于三种不同平台的 COVID-19 疫苗加强剂量在模拟巴西当前常规实践环境中的安全性和免疫原性。

方法:在这项 2023 年 2 月 14 日至 2023 年 6 月 12 日进行的 3 期研究中,我们招募了既往免疫的成年人,以接受三种疫苗之一的额外加强剂量。使用 ELISA IgG 或病毒中和 (VNT) 抗体来测量针对祖先 SARS-CoV-2 和 Omicron BF.7、BQ.1.1.3 和 XBB.1.5.6 亚谱系的免疫原性,并使用日记卡评估安全性/不良反应。

结果:根据其先前加强接种史,有既往 COVID-19 初级免疫史的志愿者分为三组-0(n=26)、1(n=140)或 2(n=606)次加强接种-按 2:1:1 随机分为接受重组蛋白(SCB-2019,Clover)、腺病毒载体(ChAdOx1-S,阿斯利康/Fiocruz)或 mRNA(BNT162b2,辉瑞/Wyeth)。所有组中,接受一剂或两剂加强接种的个体基线抗体滴度较高,无论之前加强接种次数或使用的疫苗如何,针对所有祖先和 Omicron 亚谱系的抗体滴度均增加。所有变体的第 28 天几何平均滴度(GMT)和几何平均倍数升高(GMFR)均高于 BNT162b 高于 SCB-2019 或 ChAdOx1-S,但 BNT162b 组在第 84 天显示出更快的抗体衰减。在每个队列内,每种疫苗对不同的 SARS-CoV-2 株均产生相似的 GMFR。在有 0-2 次既往加强接种的完全初级免疫成年人中,所有疫苗对蛋白、腺病毒载体或 mRNA 疫苗加强接种的耐受性均良好,且对祖先 SARS-CoV-2 和 Omicron 亚谱系均具有免疫原性。

结论:在有 0-2 次既往加强接种的完全初级免疫成年人中,蛋白、腺病毒载体或 mRNA 疫苗加强接种对祖先 SARS-CoV-2 和 Omicron 亚谱系的耐受性和免疫原性均相似。BNT162b 诱导的免疫反应最高,但接种后 3 个月抗体衰减最快。

临床试验注册:ClinicalTrials.gov,标识符 NCT05812586。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f9/11252665/2d799bd08f49/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f9/11252665/871cfa82fcc4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f9/11252665/95ac85c8a8da/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f9/11252665/45a4e21815a0/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f9/11252665/2d799bd08f49/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f9/11252665/871cfa82fcc4/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f9/11252665/95ac85c8a8da/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f9/11252665/45a4e21815a0/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42f9/11252665/2d799bd08f49/gr4.jpg

相似文献

[1]
Interchangeability of different COVID-19 vaccine platforms as booster doses: A phase 3 study mimicking real-world practice.

Vaccine. 2024-7-25

[2]
Safety and immunogenicity of a modified mRNA-lipid nanoparticle vaccine candidate against COVID-19: Results from a phase 1, dose-escalation study.

Hum Vaccin Immunother. 2024-12-31

[3]
The impact of vaccine booster doses on specific B- and T-lymphocyte dynamics in Thai healthcare personnel following COVID-19 vaccination.

Sci Rep. 2025-7-16

[4]
Immunogenicity and safety study of a single dose of SpikoGen® vaccine as a heterologous or homologous intramuscular booster following a primary course of mRNA, adenoviral vector or recombinant protein COVID-19 vaccine in ambulatory adults.

Vaccine. 2025-3-7

[5]
Functional antibody responses to SARS-CoV-2 variants before and after booster vaccination among adults in Ghana.

Exp Biol Med (Maywood). 2025-7-21

[6]
Mapping of human monoclonal antibody responses to XBB.1.5 COVID-19 monovalent vaccines: a B cell analysis.

Lancet Microbe. 2025-5-30

[7]
Immunogenicity of monovalent and multivalent subunit vaccines against SARS-CoV-2 variants in mice with divergent vaccination history.

Microbiol Spectr. 2025-7-17

[8]
COVID-19 Vaccines

2006

[9]
Safety, immunogenicity, and breakthrough infection of nine homologous or heterologous COVID-19 vaccination booster regimens in healthy adults: A prospective study in Taiwan.

Vaccine. 2025-8-13

[10]
Heterologous Ad26.COV2.S booster after primary BBIBP-CorV vaccination against SARS-CoV-2 infection: 1-year follow-up of a phase 1/2 open-label trial.

Vaccine. 2024-7-25

本文引用的文献

[1]
XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against XBB subvariants and JN.1.

Cell Host Microbe. 2024-3-13

[2]
Comparative effectiveness of heterologous third dose vaccine schedules against severe covid-19 during omicron predominance in Nordic countries: population based cohort analyses.

BMJ. 2023-7-24

[3]
Superior Boosting of Neutralizing Titers Against Omicron SARS-CoV-2 Variants by Heterologous SCB-2019 Vaccine vs a Homologous Booster in CoronaVac-Primed Adults.

J Infect Dis. 2023-11-2

[4]
Evaluation of Waning of SARS-CoV-2 Vaccine-Induced Immunity: A Systematic Review and Meta-analysis.

JAMA Netw Open. 2023-5-1

[5]
Estimation of COVID-19 mRNA Vaccine Effectiveness and COVID-19 Illness and Severity by Vaccination Status During Omicron BA.4 and BA.5 Sublineage Periods.

JAMA Netw Open. 2023-3-1

[6]
Six-month safety follow-up of an adjuvanted SARS-CoV-2 trimeric S-protein subunit vaccine (SCB-2019) in adults: A phase 2/3, double-blind, randomized study.

Vaccine. 2023-3-24

[7]
Efficacy and safety of COVID-19 vaccines.

Cochrane Database Syst Rev. 2022-12-7

[8]
Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults.

Vaccine. 2022-9-22

[9]
Homologous and Heterologous Boosting of the Chadox1-S1-S COVID-19 Vaccine With the SCB-2019 Vaccine Candidate: A Randomized, Controlled, Phase 2 Study.

Open Forum Infect Dis. 2022-8-16

[10]
Risk of myocarditis and pericarditis after the COVID-19 mRNA vaccination in the USA: a cohort study in claims databases.

Lancet. 2022-6-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索