Suppr超能文献

YOLOX-SwinT算法提高了骨科创伤外科医生对股骨转子间骨折AO/OTA分类的准确性。

YOLOX-SwinT algorithm improves the accuracy of AO/OTA classification of intertrochanteric fractures by orthopedic trauma surgeons.

作者信息

Liu Xue-Si, Nie Rui, Duan Ao-Wen, Yang Li, Li Xiang, Zhang Le-Tian, Guo Guang-Kuo, Guo Qing-Shan, Zhao Dong-Chu, Li Yang, Zhang He-Hua

机构信息

Department of Medical Engineering, Daping Hospital, Army Medical University, Chongqing, 400042, China.

Department of Information, Southwest Hospital, Army Medical University, Chongqing, 400038, China.

出版信息

Chin J Traumatol. 2025 Jan;28(1):69-75. doi: 10.1016/j.cjtee.2024.04.002. Epub 2024 Apr 23.

Abstract

PURPOSE

Intertrochanteric fracture (ITF) classification is crucial for surgical decision-making. However, orthopedic trauma surgeons have shown lower accuracy in ITF classification than expected. The objective of this study was to utilize an artificial intelligence (AI) method to improve the accuracy of ITF classification.

METHODS

We trained a network called YOLOX-SwinT, which is based on the You Only Look Once X (YOLOX) object detection network with Swin Transformer (SwinT) as the backbone architecture, using 762 radiographic ITF examinations as the training set. Subsequently, we recruited 5 senior orthopedic trauma surgeons (SOTS) and 5 junior orthopedic trauma surgeons (JOTS) to classify the 85 original images in the test set, as well as the images with the prediction results of the network model in sequence. Statistical analysis was performed using the SPSS 20.0 (IBM Corp., Armonk, NY, USA) to compare the differences among the SOTS, JOTS, SOTS + AI, JOTS + AI, SOTS + JOTS, and SOTS + JOTS + AI groups. All images were classified according to the AO/OTA 2018 classification system by 2 experienced trauma surgeons and verified by another expert in this field. Based on the actual clinical needs, after discussion, we integrated 8 subgroups into 5 new subgroups, and the dataset was divided into training, validation, and test sets by the ratio of 8:1:1.

RESULTS

The mean average precision at the intersection over union (IoU) of 0.5 (mAP50) for subgroup detection reached 90.29%. The classification accuracy values of SOTS, JOTS, SOTS + AI, and JOTS + AI groups were 56.24% ± 4.02%, 35.29% ± 18.07%, 79.53% ± 7.14%, and 71.53% ± 5.22%, respectively. The paired t-test results showed that the difference between the SOTS and SOTS + AI groups was statistically significant, as well as the difference between the JOTS and JOTS + AI groups, and the SOTS + JOTS and SOTS + JOTS + AI groups. Moreover, the difference between the SOTS + JOTS and SOTS + JOTS + AI groups in each subgroup was statistically significant, with all p < 0.05. The independent samples t-test results showed that the difference between the SOTS and JOTS groups was statistically significant, while the difference between the SOTS + AI and JOTS + AI groups was not statistically significant. With the assistance of AI, the subgroup classification accuracy of both SOTS and JOTS was significantly improved, and JOTS achieved the same level as SOTS.

CONCLUSION

In conclusion, the YOLOX-SwinT network algorithm enhances the accuracy of AO/OTA subgroups classification of ITF by orthopedic trauma surgeons.

摘要

目的

转子间骨折(ITF)分类对于手术决策至关重要。然而,骨科创伤外科医生在ITF分类中的准确性低于预期。本研究的目的是利用人工智能(AI)方法提高ITF分类的准确性。

方法

我们使用762例ITF的X线检查作为训练集,训练了一个名为YOLOX-SwinT的网络,该网络基于以Swin Transformer(SwinT)作为骨干架构的You Only Look Once X(YOLOX)目标检测网络。随后,我们招募了5名资深骨科创伤外科医生(SOTS)和5名初级骨科创伤外科医生(JOTS),让他们依次对测试集中的85张原始图像以及带有网络模型预测结果的图像进行分类。使用SPSS 20.0(美国纽约州阿蒙克市IBM公司)进行统计分析,以比较SOTS、JOTS、SOTS + AI、JOTS + AI、SOTS + JOTS和SOTS + JOTS + AI组之间的差异。所有图像均由2名经验丰富的创伤外科医生根据AO/OTA 2018分类系统进行分类,并由该领域的另一位专家进行验证。根据实际临床需求,经讨论后,我们将8个亚组整合为5个新亚组,并将数据集按8:1:1的比例分为训练集、验证集和测试集。

结果

亚组检测的交并比(IoU)为0.5时的平均精度均值(mAP50)达到90.29%。SOTS、JOTS、SOTS + AI和JOTS + AI组的分类准确率分别为56.24% ± 4.02%、35.29% ± 18.07%、79.53% ± 7.14%和71.53% ± 5.22%。配对t检验结果显示,SOTS与SOTS + AI组之间的差异具有统计学意义,JOTS与JOTS + AI组之间以及SOTS + JOTS与SOTS + JOTS + AI组之间的差异也具有统计学意义。此外,SOTS + JOTS与SOTS + JOTS + AI组在每个亚组中的差异均具有统计学意义,所有p < 0.05。独立样本t检验结果显示,SOTS与JOTS组之间的差异具有统计学意义,而SOTS + AI与JOTS + AI组之间的差异无统计学意义。在AI的辅助下,SOTS和JOTS的亚组分类准确率均显著提高,JOTS达到了与SOTS相同的水平。

结论

总之,并通过骨科创伤外科医生提高了AO/OTA亚组分类的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b87/11840343/0acf7e57c4fc/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验